Insight diagram
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
Clone of Z Clone of Sterman Model (2002)
Insight diagram
A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
Conveyor vs. nth order exponential delay.
Insight diagram
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
Clone of Sterman Model (2002)
Insight diagram
Ciclo 1 extra repair consturction errors rework
Clone of Construction Rework SD
Insight diagram
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
Clone of Clone of Clone of Clone of Sterman Model (2002)
Insight diagram
Clone of COVID 19 SYSTEM DYNAMICS
Insight diagram
WIP Overview model structures of Khalid Saeed's 2014 WPI paper Jay Forrester’s Disruptive Models of Economic Behavior  See also General SD and Macroeconomics CLDs IM-168865
Clone of Jay Forrester's Disruptive Economic Models
Insight diagram
A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
Clone of Conveyor vs. nth order exponential delay.
Insight diagram
From the 1988 killian lecture youtube video For more detailed biography See Jay Forrester memorial webpage For concepts and applications see IM-185226
History of System Dynamics Forrester
Insight diagram
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
Clone of Sterman Model (2002)
Insight diagram
DDoS Mitigation System
Insight diagram
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
Clone of Sterman Model (2002)
Insight diagram
Ciclo 1 extra repair consturction errors rework
Clone of Construction Rework SD
Insight diagram
At first, I cloned the System Dynamics Model from the "Predator-Prey Interactions" tutorial. After I did this for populations of squirrels and mountain lions instead of moose and wolves, the model showed that the more squirrels mountain lions catch, the more the mountain lion population grows, and the squirrel population declines. The squirrel death rate, therefore, depends on the number of mountain lions and the mountain lion birth rate depends on the number of squirrels. 

I complicated the model by adding 15 hunters to the landscape. Now, the model starts with 150 squirrels, 100 mountain lions, and 15 hunters. This model operates under the assumption that hunters want to kill mountain lions, who presumably try to eat the farm animals that represent the hunters' livelihoods. I made the mountain lion death rate dependent on the number of hunters, and the model changed such that the squirrel population exploded and the mountain lion population approached extinction every 20 years. I based this model on a real event, which took place and is still taking place in the Sierra Nevada. Squirrel populations there apparently reached record levels when farmers seeking to protect their land killed off the vast majority of the mountain lion population there. Now, hunters in the area kill squirrels for sport because they disrupted the food chain so irrevocably.
Clone of First SD Model: Predator Prey Model with Squirrels, Mountain Lions, and Hunters
Insight diagram
This is a model that simulates the competition between logging versus adventure tourism (mountain bike riding) in Derby Tasmania. The simulation is borrowed from the Easter island simulation
Simulation of Derby Mountain bikes versus logging
Insight diagram
A model shows the System Dynamics that represent the COVID-19 cases in Brgy. Rio Tuba, Bataraza, Palawan as of the month of May 2022.
Ph_Covid19SDM_RevalynSalut
Insight diagram
A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
Simulation of Derby Mountain Bike Vs Logging
Insight diagram
Internet of Things and Data Collection - Active and Passive Data.
Clone of Active and Passive Internet of Things
Insight diagram
Este modelo busca simular la demanda y oferta de materiales de construcción en la ciudad de Calí (Colombia), En cuanto a la demanda se presenta como principales iniciadores entre otros: 
La salud económica (PIB regional, desempleo, cartera hipotecaria)
Estado de la construcción (Licenciamientos, iniciaciones, obras civiles, despachos de cemento)
En cuanto a la oferta se presenta como principales iniciadores entre otros:
Capacidad de proveedores: (Disponibilidad de fuentes, Calidad)
Aspectos legales (Titulos mineros, socioambiental)
Transporte (Flete, estado de la red vial, precio de combustible, distancia de acarreo)

Clone of Oferta y demanda de materiales de construcción en Cali
Insight diagram
A System Dymanic Model of a Predator-Prey interactions using the real-life data. The predator on this model is Equatorial Spitting Cobra while the prey is Palawan Mountain Rat
Ph_PredatorPrey_AdelaVicente
Insight diagram

Overview 

This model not only reveals the conflict between proposed logging of adjacent coups and Mountain bike in Derby but also simulates competition between them. The simulation model aims to investigate the potential coexistence opportunities between the mountain biking and forestry and find out the optimal point for coexistence to help improve Tasmania’s economy. 

 

How the model works 

It is recognized that the mountain biking and forestry industries can help support the Tasmanian community and strengthen the Tasmanian economy. The logging and forest sector in Derby can help the local community generate wealth and create more employment opportunities. The sector main source of income come from selling timber such as domestic and export sales. Nevertheless, the sector’s profit has decreased over the past few years on account of the weaker demand and reduced output. Accordingly, the profitability and output of the sector have fluctuated in response to the availability of timber, the timber price movements as well as the impact of changing demand conditions in downstream timber processing sectors. The slow growth rate for a timber has a negative impact on the profitability of the forestry industry and the economic contribution of this industry is set to grow slower, as there is a positive correlation between these variables. In addition, the mountain biking industry in Derby can bring a huge significant economic contribution to the local community. The revenue streams of the industry come from bike rental, accommodation, retail purchase and meals and beverages. These variables also influence the past experience which is positive correlation between reviews and satisfaction that can impact the demand for the mountain biking trails. More importantly, the low regeneration rate for a timber can have a negative impact on the landscape of the mountain biking and the tourist’s past experience that led to a decrease in the demand of tourists for the mountain biking, as the reviews and satisfaction are dependent on the landscape and past experience. It is evident that the industry not only helps the local community generate wealth through industry value addition but also creates a lot of employment opportunities. Therefore, the Mountain Bike Trails can be regarded as sustainable tourism that can help increase employment opportunities and economic contribution that can be of main economic significance to the Tasmania’s economy. Therefore, both industries can co-exist that can maximise the economic contribution to the local community and the Tasmanian economy.


Interesting Insights

It is interesting to note that the activity of cutting down trees does not influence the development of Mountain Biking industry. By lowering the prices of accommodation, food, bike rental and souvenirs, it can help increase the reviews and recommendations of Mountain Biking that will enhance the number of tourists. In this case, the Mountain Biking industry can achieve sustainable economic growth in the long-term while the economic growth rate of forestry industry will continue to decrease. 


Simulation of Derby Mountain bikes versus logging
Insight diagram
A pest known as a grape-leaf hopper can cause considerable losses in vineyards. Periodically it was found that a natural parasite, anagrus epos, drastically reduced the size of the hopper population. This, in turn, led to a reduction in food (hoppers) available to the parasite and the parasite population declined until the hopper population increased again. This cycle would repeat.It was found that the parasite, anagrus epos, also feeds on a non-pest leaf hopper which feeds on blackberries. By planting small patches of wild blackberries in the vineyards, the growers were able to maintain a stable parasite population that was large enough to control population explosions of both leaf hoppers.
Clone of Grape-leaf Hopper system
Insight diagram
Foxes birth rate  is decrease by 50%
Clone of Investigation of Predator/Prey Modal 1 Scenario 5
Insight diagram

​This model attempts to understand the behavior of average lifetime of companies in the S&P500 index. The reference mode for the model is a graph available at this link: https://static-cdn.blinkist.com/ebooks/Blinkracy-Blinkist.pdf (page 5) which was discussed in the System Thinking World Discussion forum.

Mergers & Acquisitions can be one of the reasons for older companies to be replaced with newer companies in the Index. With M&A of older companies, the empty slots are taken over by newer companies. However, overtime, these new companies themselves become old. With steady M&A, the stock of older companies decreases and stock of newer companies increases. The result is that average age of the companies in the S&P Index decreases.

The oscillations in the diagram, according to me, is due to oscillations in the M&A activity.

There are two negative feedback loops in the model. (1) As stock of new companies increases, the number of companies getting older increases which in turn decreases the stock. (2) As M&A increases, stock of older companies decreases which in turn decreases M&A activities.

Limits of the model

The model does not consider factors other than M&A in the increase in number of new companies in the Index. New companies themselves may have exceptional performance which will result in their inclusion in the Index. Changes in technology for example Information Technology can usher in new companies.

Assumptions

1. It is assumed that M&A results in addition of new companies to the Index. There could be other older companies too, which given the opportunity, can move into the Index. Emergence of new technologies brings in new companies.

Clone of Age of companies in S&P500