An Initial System Dynamics Model for GFS in certain region(s) of Africa
An Initial System Dynamics Model for GFS in certain region(s) of Africa
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
  Problém časové alokace     Semestrální práce      V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.
Problém časové alokace
Semestrální práce

V této simulaci můžeme pozorovat přibližnou dobu na dokončení projektu, který má zadané parametry, jenž ovlivňují dobu jeho dokončení. Zároveň také znázorňuje zjednodušené nabývání znalostí a nárůst (případně pokles) mzdy v poměru se znalostmi.

Celý model obsahuje 3 hladiny - vývojový čas, plat a znalosti vývojářů. Mezi parametry, jenž lze zadávat a jenž ovlivňují celkovou dobu vývoje, patří: počet vývojářů (1 - 10), základní mzda (35.000 - 120.000), termín (1 - 6) a obsáhlost projektu (0.4 - 2).

Celkový počet vývojářů a znalosti vývojářů ovlivňují výslednou mzdu jednotlivých vývojářů. Termín určuje za jak dlouhou dobu si přeje klient projekt dokončen (pravý čas se dozví v simulaci) a obsáhlost projektu představuje o jak velký projekt se jedná.

V simulaci lze pozorovat tři grafy. První porovnává požadovaný čas s reálným časem stráveným na projektu, spolu s křivkou komplexnosti jednotlivých prvků, které se vyskytly během vývoje. Druhý graf nám ukazuje nárůst znalostí aktuálního týmu (tým se znalostí 1 dokonale rozumí dané problematice) a na třetím grafu lze vidět vývoj mzdy vývojářů během projektu (mzda je závislá na znalostech, tedy graf má stejný tvar).
 
   OBLIQUE THROW IN VACUUM   A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:  (a) the horizontal and vertical velocity component mo

OBLIQUE THROW IN VACUUM

A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:

(a) the horizontal and vertical velocity component modules at the moment of launch;

(b) the instant at which the body reaches the highest point of its trajectory;

c) the maximum height reached by the body;

d) The range of the throw.

Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003.

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

 Visão geral 

 O modelo mostra a
conexão e o conflito da indústria entre o turismo florestal e o turismo de
montanha em Derby, Tasmânia. O objetivo desta simulação é descobrir o ponto de
equilíbrio para a coexistência. 

 Como funciona o
modelo? 

 Ambas as
indústrias podem fornecer contribuições e

Visão geral

O modelo mostra a conexão e o conflito da indústria entre o turismo florestal e o turismo de montanha em Derby, Tasmânia. O objetivo desta simulação é descobrir o ponto de equilíbrio para a coexistência.

Como funciona o modelo?

Ambas as indústrias podem fornecer contribuições económicas para a Tasmânia. Em primeiro lugar, a venda de madeira através da exploração madeireira geraria renda. Além disso, os gastos dos ciclistas de montanha gerariam renda. No entanto, a baixa taxa de regeneração das árvores não pode encobrir a exploração madeireira, o que influencia as belas vistas e as experiências dos ciclistas. Embora a satisfação e a expectativa dependam das opiniões e da experiência, a demanda pelo mountain bike também seria influenciada pelas visitas repetidas e pelo boca a boca.

Informações interessantes

Embora a silvicultura possa fornecer uma grande contribuição económica para a Tasmânia, o excesso de exploração madeireira vai contra a estrutura ESG, além de criar conflito com o turismo de montanha. Desde que o número de visitas de cavaleiros seja estável, o turismo pode sempre proporcionar uma maior contribuição económica em comparação com a silvicultura. Portanto, o governo deveria considerar o ponto de equilíbrio entre as duas indústrias.

  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
From the 1988 killian lecture youtube  video  For more detailed biography See Jay Forrester memorial  webpage  For concepts and applications see  IM-185226
From the 1988 killian lecture youtube video For more detailed biography See Jay Forrester memorial webpage For concepts and applications see IM-185226
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses.    How the model works  The left side shows when the number of travellers increase, the income from travellers rental of bike and stay
A model situmalte the relationship between moutain bikes and logging industry in Derby, Tasmania, It explains more when the number of visitors increases or decreses. 

How the model works
The left side shows when the number of travellers increase, the income from travellers rental of bike and stay of hotel increase simultaneously. However, there is a capacity for both parking lots and hotel venues, which means that the top ability of hospitality of Derby. The right side shows the logging industry of Derby and income from logging. It has a impact on how travellers would value Derby moutain.

Insights
As the number of travellers increase, it increases the total income of Derby, and in return, the local government will re-revest in Derby Moutain and will also maintain the forrestry logging industry. 
Based on model discussed by John D. Sterman (p 508) in  All models are wrong: reflections on becoming a systems scientist  (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flo
Based on model discussed by John D. Sterman (p 508) in All models are wrong: reflections on becoming a systems scientist (2002). Task: (A) Sketch what you think the resultant graph will be (see directions for drawing in model). (B) Then Run Simulation.  Optional Extension: Replace Graph In/Out Flow connection with a connection from Trig. function.  Repeat (A) & (B).
 
   OBLIQUE THROW IN VACUUM   A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:  (a) the horizontal and vertical velocity component mo

OBLIQUE THROW IN VACUUM

A body is thrown obliquely into the vacuum at an initial velocity of 100 m / s, in a direction that forms with the horizontal an angle x, such that sin (x) = 0.8 and cos (x) = 0.6. Adopting g = 10m / s², determine:

(a) the horizontal and vertical velocity component modules at the moment of launch;

(b) the instant at which the body reaches the highest point of its trajectory;

c) the maximum height reached by the body;

d) The range of the throw.

Source: RAMALHO, NICOLAU AND TOLEDO; Fundamentos de Física, Volume 1, 8th edition, pp. 12 - 169, 2003.

This model may be cloned and modified without prior permission of the authors. Thanks for quoting the source.

A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
10 months ago
  Overview    A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties.       How does the model work?    The demand for mountai

Overview 

A simple model simulates the conflict between adventure tourism (mountain biking) and logging in Derby, Tasmania. It demonstrates how these industries co-exist and in what circumstances would affect the interests of both parties. 


How does the model work? 

The demand for mountain biking came from visitors' enjoyment of nature and desire for scenery. Adventure is driven by the excitement of visitors with their experience and friends' recommendations.  

The demand for timber leads to the amount of logging, and its price per log impacts forest revenue. It brought employment opportunities to the local residents in Derby Mountain. The excessive deforestation affects landscapes and scenery, so regrowth is essential. 


Interesting Insights 

The major rebate is reducing park spaces will degrade visitors' experience of enjoyment with nature. Still, at the same time, logging brings significant business benefits to the local residents.  The environmental effect of being well-managed between mountain bikes and logging needs to be depth-explored and balanced. 

A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
A Conveyor is essentially an infinite order exponential delay.  This insight illustrates how increasing the order of an exponential delay begins to approximate a conveyor.  The 10th order delay very closely aligns to the Delay 10 Conveyor.
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.    According to the analysis, logging does not reduce tourism income. Wi
This model shows the changing happened in forest industry and mountain tourism in Derby Tasmania. Logging will degrade mountain tourism while benefit the forestry industry. Simulation borrowed from the Easter Island simulation.

According to the analysis, logging does not reduce tourism income. With the increase of number of bike guide, tourism income will increase as well. Also, in forest industry, timber income is higher than the harvest spending which means the industry always gain profits from logging. Therefore, the main concern is that the logging should be balanced between the Mountain Tourism and the forest industry.
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough no
A new archetype, The Tyranny of Small Steps (TYST) has been observed. Explained through a system dynamics perspective, the archetypical behaviour TYST is an unwanted change to a system through a series of small activities that may be independent from one another. These activities are small enough not to be detected by the ‘surveillance’ within the system, but significant enough to encroach upon the “tolerance” zone of the system and compromise the integrity of the system. TYST is an unintentional process that is experienced within the system and made possible by the lack of transparency between an overarching level and a local level where the encroachment is taking place.

Reference:

Haraldsson, H. V., Sverdrup, H. U., Belyazid, S., Holmqvist, J. and Gramstad, R. C. J. (2008), The Tyranny of Small Steps: a reoccurring behaviour in management. Syst. Res., 25: 25–43. doi: 10.1002/sres.859 

A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.
A model that shows how the digital advertising market is growing and how Google's share in this market, and subsequently their financial results, are influenced by investing in either three of the policy variables.