An steel cylinder oscillates inside a glass tube and over confined air within a glass bottle. As consecuence one observes an oscilation of the inside presure and the inner energy (temperature).
An steel cylinder oscillates inside a glass tube and over confined air within a glass bottle. As consecuence one observes an oscilation of the inside presure and the inner energy (temperature).
This shows the motion of a damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. An accurate solution requires a small time step and RK4 as the integration
This shows the motion of a damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. An accurate solution requires a small time step and RK4 as the integration algorithm.
 
  Um corpo é
lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com
a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:   a) Os módulos das componentes horizontal e vertical da
velocidade no instante de lançamento;  b)

Um corpo é lançado obliquamente no vácuo com velocidade inicial de 100 m/s, numa direção que forma com a horizontal um ângulo x, tal que sen(x) = 0,8 e cos(x) = 0,6. Adotando g = 10m/s², determine:

a) Os módulos das componentes horizontal e vertical da velocidade no instante de lançamento;

b) O instante em que o corpo atinge o ponto mais alto da trajetória;

c) A altura máxima atingida pelo corpo;

d) O alcance do lançamento.

Fonte: (RAMALHO, NICOLAU E TOLEDO;Fundamentos da Física, Volume 1, 8ª edição, pp. 12 – 169, 2003).

Clique aqui para ver uma descrição do que é Lançamento Oblíquo no vácuo.

A PID control loop for a simple linear system Some stochasticity in the throttle and sensor ​
A PID control loop for a simple linear system
Some stochasticity in the throttle and sensor ​
An steel cylinder oscillates inside a glass tube and over confined air within a glass bottle. As consecuence one observes an oscilation of the inside presure and the inner energy (temperature).
An steel cylinder oscillates inside a glass tube and over confined air within a glass bottle. As consecuence one observes an oscilation of the inside presure and the inner energy (temperature).
Simple example of a 1D bouncing ball, where the ground is modeled as a spring. Air friction is included as a force proportional to air speed.
Simple example of a 1D bouncing ball, where the ground is modeled as a spring. Air friction is included as a force proportional to air speed.
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency.     The oscillator is driven with a force that is a sine function o
This shows the motion of a driven damped harmonic oscillator, described in terms of the undamped natural frequency, and a frequency gamma that reflects the degree of damping, parameterized as a damping ratio gamma/natural frequency. 

The oscillator is driven with a force that is a sine function of time, with a frequency that can be varied, expressed as a forcing ratio driving frequency/natural frequency.

An accurate solution requires a small time step and RK4 as the integration algorithm.
Bipolar II treatment modeling using Van der Pol-like oscillators.  In this simulation an afflicted individual with Bipolar II disorder is put to treatment after 20 months the calibration of the medicine or treatment he recieves is such that it simulates the natural cycles of a "normal being". You ca
Bipolar II treatment modeling using Van der Pol-like oscillators.

In this simulation an afflicted individual with Bipolar II disorder is put to treatment after 20 months the calibration of the medicine or treatment he recieves is such that it simulates the natural cycles of a "normal being". You can note by manipulating the parameters that sometimes too much treatment disrupts equilibria. Also note that in the state diagrams there are 2 limit cycles, the lower one being the healthiest as there are less changes.
 Grundmodell der Newtonschen Mechanik angewendet auf den Fall mit Luftreibung (z.B. Fallschirmspringen)
Grundmodell der Newtonschen Mechanik angewendet auf den Fall mit Luftreibung (z.B. Fallschirmspringen)
Cette simulation est une version optimisée de l'eaurdinateur, dans laquelle on a utilisé l'influence d'un flux sur un autre pour économiser les réservoirs utilisés pour diviser par deux les flux de sortie des portes AND.   Nous n'avons malheureusement pas réussi à changer la couleur de l'état en fon
Cette simulation est une version optimisée de l'eaurdinateur, dans laquelle on a utilisé l'influence d'un flux sur un autre pour économiser les réservoirs utilisés pour diviser par deux les flux de sortie des portes AND.

Nous n'avons malheureusement pas réussi à changer la couleur de l'état en fonction de sa valeur. Celle-ci peut être changée dans le panneau de configuration, afin de tester des valeurs différentes.

On notera que pour obtenir un résultat correct, deux conditions sont nécessaires:
1°) Il faut attendre que les flux dans les portes se stabilisent, ce qui prend pas moins de 10 secondes (et qui reflète le délai de latence inhérent à tout circuit, qui correspond environ au nombre maximum de portes logiques traversées entre l'entrée et la sortie du circuit.
2°) Il faut utiliser la méthode de simulation basée sur une approximation de Runge-Kutta, sous peine de voir apparaître des oscillations parasites dans certaines portes qui rendent le résultat instable.