Z205 from System Zoo 1 p95-98
Chaotic Bistable Oscillator
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
REM 221 - Z418 - Sustainable Use of a renewable resource
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."
Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Z602 Population with four age groups
An exploration of interactions among 'fuzzy' qualitative concepts that interact to produce either tolerance or violent conflict. Z509 p43-49 System Zoo 3 by Hartmut Bossel.
Aggression
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
Clone of ENV221 - Z418 - Sustainable Use of a renewable resource
Rotating Pendulum Z201 from System Zoo 1 p80-83
Rotating Pendulum
Z209 from Hartmut Bossel's System Zoo 1 p112-118. Compare with PCT Example IM-9010
Balancing an Inverted Pendulum
Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. Z506 p32-35 System Zoo 3 by Hartmut Bossel.
Competition for Resources
Model Z605 Miniworld, from System Zoo 3 by Hartmut Bossel
Z605 Miniworld
Attempting to outdo an opponent leads to escalation. A weaker response leads to De-escalation. A slightly more complex form of Insight 972. Z508 p36-38 System Zoo 3 by Hartmut Bossel.
Escalation
System Zoo Z103: Exponential growth and decay from System Zoo 1 by Hartmut Bossel
System Zoo Z103: Exponential growth and decay
System Zoo Z112: Double integration and exponential decay from System Zoo 1 by Hartmut Bossel
System Zoo Z112: Double integration and exponential decay
System Zoo Z418 - Sustainable Use of a renewable resource from Hartmut Bossel (2007) System Zoo 2 Simulation Models. Climate, Ecosystems, Resources
Z418 - Sustainable Use of a renewable resource
System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel
System Zoo Z101: Single integration
Perceptual Control Theory Model of Balancing an Inverted Pendulum. See Kennaway's slides on Robotics. as well as PCT example WIP notes. Compare with IM-1831 from Z209 from Hartmut Bossel's System Zoo 1 p112-118
Balancing an Inverted Pendulum PCT Model
Thanks to
https://insightmaker.com/insight/1830/Rossler-Chaotic-Attractor
for this example of chaos, and the transition to chaos. "After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior."
We're looking into environmental applications in our course, and how dramatically dynamics can change, based on a small change in parameters. Climate change "suffers" this chaotic behavior, we fear, and we're going to be "taken by surprise" when the dynamics changes on us suddenly....
Andy Long
The Rossler Chaotic Attractor
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."
Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."
Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."
Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."
Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Clone of Z602 Population with four age groups
System Zoo Z101: Single integration from System Zoo 1 by Hartmut Bossel
AA_Zoo Z101: SIN_input
System Zoo Z109: Logistic growth with constant harvest from System Zoo 1 by Hartmut Bossel
Exercise 6 simulates a whale poplutation with a minimum reproductive capacity
System Zoo Z109 ex 6: Whale population
System Zoo Z111 H Bossel p47 a variant of Michaelis Menten Enzyme Kinetics. See also IM-854 for Hannon and Ruth and IM-855 for receptor version and IM-856 for a bond graph view
Density Dependent Growth (Michaelis-Menten)
System Zoo Z107 exercise 2: Infection dynamics, exercise 2 (a part of the population is immune to infection) from System Zoo 1 by Hartmut Bossel
This is my attempt at the problem, not necessarily correct!
Clone of System Zoo Z107-ex2: Infection dynamics with immune subpopulation