Insight diagram
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
Microgrid with storage
Insight diagram

WIP Stock Flow representation of Panarchy Adaptive Cycles

Adaptive Cycles Stock Flow
Insight diagram

Similar layout to CEU insight based on 2016 Land Use Science article on Causal Analysis by Patrick Meyfroidt This is focussed on causal chains

Causal Analysis
Insight diagram
Limits To Growth - Peak Oil Game - Intro Level
Insight diagram
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the upper slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.

The lower slider allows you to simulate a variable river flow, and understand how dispersion compensates for changes in freshwater input.
Estuarine salinity 1D model
Insight diagram
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
Phyto 2 - Michaelis-Menten curve for phytoplankton
Insight diagram
The Eastern Himalayas is a hot spot in ​India. There is an abundance of species living in the area that are threatened by humanity.
Eastern Himalayan Mountains
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.


Key Concepts in Systems Thinking : Predator Prey Interactions
Insight diagram
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

Isle Royale: Predator/Prey Model for Moose and Wolves
Insight diagram
To calculate the emission from mobile sources (road traffic) in DKI Jakarta, Indonesia
Emission Inventory & Prediction
Insight diagram
Very simple model demonstrating growth of phytoplankton using Steele's equation for potential production and Michaelis-Menten equation for nutrient limitation.

Both light and nutrients (e.g. nitrogen) are modelled as forcing functions, and the model is "over-calibrated" for stability.

The phytoplankton model approximately reproduces the spring-summer diatom bloom and the (smaller) late summer dinoflagellate bloom.
 
Oyster growth is modelled only as a throughput from algae. Further developments would include filtration as a function of oyster biomass, oyster mortality, and other adjustments.
Simple phytoplankton and oyster model
Insight diagram
This model describes the key processes that influence the water level within Lake Okeechobee.
Simple Model of Water Level in Lake Okeechobee
Insight diagram
sumatran orangutan food web
Sumatran Orangutan food web
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Clone of Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
Insight diagram
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
Phyto 101 - PI curve for phytoplankton
Insight diagram
The model starts in 1900. In the year 2000 you get the chance to set a new emission target and nominal time to reach it. Your aim is to have atmospheric CO2 stabilise at about 400 ppmv in 2100.  From Sterman, John D. (2008)  Risk Communication on Climate:  Mental Models and Mass Balance.  Science 322 (24 October): 532-533. Older version of IM-9283.
Climate Stabilization Task - Older
Insight diagram

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation.
For approximate Continuous Behavior set 'R Base' to a small number like 0.125To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

The Logistic Map
Insight diagram
This stock and flow diagram provides a broad description of the key nutrient pathways (N and P) that exist in a dune-lake system subject to external loadings emanating from intensive agriculture.
Stock and flow diagram of a dune lake (Working draft)
Insight diagram
Small Lake Phosphorus Model
Insight diagram
Fertilizer inflow can cause lake eutrophication. In this simulation, we are studying what happens in a simple lake ecosystem.
Lake ecosystem 1
Insight diagram
Policy Intervention: Ecotourism
Insight diagram
This is a model for the mass flow of phosphorus in a stream called "Ljurabäck" in Norrköping during two months. The stream flows from a lake called "Glan" to a large stream called "Motala Ström". 

The model uses daily water flow values and a gradually decreasing P concentration in the lake.
Mass flow totP in stream "Ljurabäck"
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Rainwater Harvesting -Tucson ENVS 270 F21
Insight diagram
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Clone of Cane Toad Food Web