A simulation illustrating simple predator prey dynamics. You have two populations.

A simulation illustrating simple predator prey dynamics. You have two populations.

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

  The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].     The World3 model builds by system dynamics theory that is has an approach to underst
The World Socio-Economics model is computer model to simulate the consequence of interactions between the earth and human systems based on the World3 model by the work of Club of Rome, The Limits to Growth[1].

The World3 model builds by system dynamics theory that is has an approach to understanding the nonlinear behaviour of complex systems over time using stocks, flows, feedback loops, table functions and time delays.

The Limits to Growth concludes that, without substantial changes in resource consumption, "the most probable result will be a rather sudden and uncontrollable decline in both population and industrial capacity". 

Since the World3 model was originally created, it has had minor tweaks to get to the World3-91 model used in the book Beyond the Limits[2], later improved to get the World3-03 model used in the book Limits to Growth: the 30 year update[3].

References;
[1] Meadows, Donella H., Meadows, Dennis L., Randers, Jørgen., Behrens III, William W (1972). The Limits to Growth. 

[2] Meadows, Donella H., Dennis L. Meadows, Randers, Jørgen., (1992). Beyond the limits: global collapse or a sustainable future.

[3] Meadows, Dennis., Randers, Jørgen., (2004). The limits to growth: the 30-year update.
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel. Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel.
Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems.  Ecology and Society   18 (3): 27.  link
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Model of how different features impact water supply and how water access disparity can influence conflict.
Model of how different features impact water supply and how water access disparity can influence conflict.
 This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow in

This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.


 This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and

This model describes nitrogen cycling in a dune-lake system in the Northland region of New Zealand. It is based on stock and flow diagrams where each orange oval represents an input, while each blue box represents a stock. Each arrow represents a flow. Flows reduce the stock at which they start and add to the stock at which they end.

This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This insight maker depicts the correlations between energy supply and water use in desalination potential in South Africa.  Pink: economics and quality of life.  Yellow: energy supply  Orange: variable links  Blue: water and its relationships   Green: household unit of population measurement
This insight maker depicts the correlations between energy supply and water use in desalination potential in South Africa. 
Pink: economics and quality of life.
Yellow: energy supply
Orange: variable links
Blue: water and its relationships 
Green: household unit of population measurement
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
A system diagram for the Mojave Desert including example socio-economic factors for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert including example socio-economic factors for an assignment at OSU- RNG 341.