Insight diagram
This model shows the cycling of Mercury within a coastal wetland system. This cycling shows Elemental Mercury, Hg 2+, and Methylmercury within the soil, water, and air, and also interaction with the plants in the system.

Total wetland transpiration: 1.95x10^-5 m^3 m^-2 s^-1
Settling rate and resuspension units (%of settling): g m^-2 day^-1
Project 2 Wetland Mercury
Insight diagram
Testing for MSc
Clone of Clone 26/07/16 of Plastic Pollution Solution Revolution
Insight diagram
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


Clone of Oyster Growth based on Phytoplankton Biomass
Insight diagram
Combining electromobility and renewable energies since 2014.

http://www.amsterdamvehicle2grid.nl/

Clone of Amsterdam V2G simulation 2.0
Insight diagram
Students in ENVS 270 Online at the University of Arizona: please click Clone Insight at the top to make an editable copy of this model.

As initially proposed by Pr. William M White of Cornell University:

http://www.geo.cornell.edu/eas/education/course/descr/EAS302/302_06Lab11.pdf
http://www.eas.cornell.edu/
Global Carbon Cycle - For ENVS 270 Online
Insight diagram
•Average (Status Quo) Case
–Last 30 years of historical EAA data
–Used the past to predict the future
–Represents the status quo case
–Includes the dry portion  and wet portion of AMO cycle
EA model trying scenario of water demand (Status quo scenario)
Insight diagram
Life and Death
Clone of Mooses & Wolves
Insight diagram
Primary production model with phytoplankton as a state variable, force by light and nutrients. Model expanded to include bivalves.
PhytOster 3
Insight diagram
This model is based off Meadows economic capital with reinforcing growth loop constrained by a renewable resource model.
Tourism Simulator
Insight diagram
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Clone of Air Pollution Dynamics - Firewood Combustion
Insight diagram
InClassExercise--ExponentialGrowthRabbits
Insight diagram

THE 2017 MODEL (BY GUY LAKEMAN) EMPHASIZES THE PEAK IN POLLUTION BEING CREATED BY OVERPOPULATION WITH THE CARRYING CAPACITY OF ARABLE LAND NOW BEING 1.5 TIMES OVER A SUSTAINABLE FUTURE (PASSED IN 1990) AND NOW INCREASING IN LOSS OF HUMAN SUSTAINABILITY DUE TO SEA RISE AND EXTREME GLOBAL WATER RELOCATION IN WEATHER CHANGES IN FLOODS AND DROUGHTS AND EXTENDED TROPICAL AND HORSE LATTITUDE CYCLONE ACTIVITY AROUND HADLEY CELLS

THE MODEL IS ZONE SPECIFIC AS GLOBAL WEATHER IS NOT HOMOGENEOUS BUT A COLLECTION OF HEAT BUMBPS DEPENDENT ON POPULATION SIZE OF URBAN HEAT ISLANDS AND MASSED CONURBATIONS AND AGGLOMERATIONS 

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.

THIS MODEL BY GUY LAKEMAN, FROM METRICS OBTAINED USING A MORE COMPREHENSIVE VENSIM SOFTWARE MODEL, SHOWS CURRENT CONDITIONS CREATED BY THE LATEST WEATHER EXTREMES AND LOSS OF ARABLE LAND BY THE  ALBEDO EFECT MELTING THE POLAR CAPS TOGETHER WITH NORTHERN JETSTREAM SHIFT NORTHWARDS, AND A NECESSITY TO ACT BEFORE THERE IS HUGE SUFFERING.
BY SETTING THE NEW ECOLOGICAL POLICIES TO 2015 WE CAN SEE THAT SOME POPULATIONS CAN BE SAVED BUT CITIES WILL SUFFER MOST. 
CURRENT MARKET SATURATION PLATEAU OF SOLID PRODUCTS AND BEHAVIORAL SINK FACTORS ARE ALSO ADDED

Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

2017 Weather & Climate Extreme Loss of Arable Land and Ocean Fertility by Guy Lakeman - The World3+ Model: Forecaster
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
Insight diagram
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
Modelling human behaviour (MoHuB)
Insight diagram
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Clone of Air Pollution Dynamics - Firewood Combustion
Insight diagram
Fluxograma da produção de biodiesel a partir de microalgas
Insight diagram
Here is the Covid 19 Statistics model based on the Philippines.
Ph_Covid19SDM_Jaspher Balcueba (FINAL)
Insight diagram
Polyrhachis identification chart
Not aware of your Polyrhachis identification type, use this to help identify it.

(Not all species listed) (all located on Australia)
Polyrhachis identification chart
Insight diagram
Deforestation
Insight diagram
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
Clone of Estuarine salinity 1 box model (J. Gomes Ferreira)
Insight diagram
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

Simple model to represent oyster individual growth by simulating feeding and metabolism.
EMSD 2016
Insight diagram
A clone of the first model with the addition of a converter to describe the competition between rabbits for available vegetation based on the relationship between rabbit density and rabbit birth rate
Clone of Group 1 BA Assignment2 MEL
Insight diagram
Verkoppelung der drei Teilmodelle zu einem Gesamtmodell, der "Miniwelt" im Umfang von Bossel.
Eine Modifikation besteht darin, dass ein hohes Konsumniveau wieder zu einer Absenkung der Geburten führt.
Miniwelt nach Bossel, Reiche kriegen weniger Kinder
Insight diagram
This model adresses the primary production for phytoplankton growth, based on Steele’s light intensity equation and Michaelis-Menten equation for nutrient limitation.


Primary production of phytoplankton (SIMA2018_G1)