From Tarek KA Hamid's Book Thinking in Circles About Obesity Springer 2009

From Tarek KA Hamid's Book Thinking in Circles About Obesity Springer 2009

WIP From  zenker 2007  article  PLoS Computational Biology From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses
WIP From  zenker 2007 article PLoS Computational Biology From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses
 Working model of Erythropoiesis and Erythropoiesis Stimulating Agents (ESA) Dosing in Anemia due to Renal Failure from Jim Rogers See Stock Flow Map   Insight 810   and Simpler Dosing Model at  IM-26182

Working model of Erythropoiesis and Erythropoiesis Stimulating Agents (ESA) Dosing in Anemia due to Renal Failure from Jim Rogers See Stock Flow Map  Insight 810  and Simpler Dosing Model at IM-26182

Theories and models of heredity from Rethinking
heredity, again R. Bonduriansky 2012  article
Theories and models of heredity from Rethinking heredity, again R. Bonduriansky 2012 article
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Mammary gland structures example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: Montevil  paper  on organogenesis. Compare with Bogdanov (click tag)
Mammary gland structures example from Progress in Biophysics & Molecular Biology Special Issue 2016 From the century of the genome to the century of the organism: Montevil paper on organogenesis. Compare with Bogdanov (click tag)
10 months ago
Examples of macroanalysis relevant to representing causal mechanisms linking genes to diseases from darden2018 MecCog  article  and 2017 Product to Process  article
Examples of macroanalysis relevant to representing causal mechanisms linking genes to diseases from darden2018 MecCog article and 2017 Product to Process article
 Hannon and Ruth Modeling Dynamic Biological Systems p67 adapted to Bond Graph Kinetic Modeling Metabolic Map Alternate Layout of insight  IM-857  Here Join and Split Flows are unfolded rather than using folders around the Stocks.

Hannon and Ruth Modeling Dynamic Biological Systems p67 adapted to Bond Graph Kinetic Modeling Metabolic Map Alternate Layout of insight IM-857 Here Join and Split Flows are unfolded rather than using folders around the Stocks.

Stock flow map of Immune System Cell type proliferation and differentiation, migration and circulation from Figs 1.3, 8.14 and 8.33 from Janeway's Immunobiology see  Insight  . Does not include cell death, interactions or inhibitory and promoting factors
Stock flow map of Immune System Cell type proliferation and differentiation, migration and circulation from Figs 1.3, 8.14 and 8.33 from Janeway's Immunobiology see Insight . Does not include cell death, interactions or inhibitory and promoting factors
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

6 months ago
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

Summary of Gizem Aktas M Sc thesis and prize winning paper from ISDC2018 extended  abstract pdf   See also Tom fiddaman's metaSD blog  entry 1 and  entry 2  Note the response time frame of interest is from hours to around 45 days. See  IM-34861  for a broader developmental view
Summary of Gizem Aktas M Sc thesis and prize winning paper from ISDC2018 extended abstract pdf 
See also Tom fiddaman's metaSD blog entry1 and entry 2 Note the response time frame of interest is from hours to around 45 days. See IM-34861 for a broader developmental view
 Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hep

Minimal model of glucose kinetics by Bergman, used to calculate insulin sensitivity from an Intravenous Glucose Tolerance Test (IVGTT). Plasma insulin I(t) enters a remote compartment X(t) where it is active in accelerating glucose G(t) disappearance into the periphery and liver, and inhibiting hepatic glucose production. Adapted from Minimal Models for Glucose and Insulin Kinetics: A Matlab implementation by Natal van Riel, Eindhoven University of Technology 2004 by Mark Heffernan.

Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, ​Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life