Z207 from Hartmut Bossel System Zoo 1 p103-107  After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior

Z207 from Hartmut Bossel System Zoo 1 p103-107


After running the default settings Bossel describes A=0.2, B=0.2, Initial Values X=0 Y=2 and Z=0 and varying C=2,3,4,5 shows period doubling and transition to chaotic behavior
Simulation de la température au cours du temps d'une tasse de thé chaud dans lequel on met de la crème à un certain moment, qui peut être librement choisi. Le challenge est de savoir si, pour garder le thé plus chaud, il vaut mieux mélanger tout de suite la crème, ou attendre le dernier moment juste
Simulation de la température au cours du temps d'une tasse de thé chaud dans lequel on met de la crème à un certain moment, qui peut être librement choisi.
Le challenge est de savoir si, pour garder le thé plus chaud, il vaut mieux mélanger tout de suite la crème, ou attendre le dernier moment juste avant de le boire.
La réponse est obtenue en changeant l'instant du mélange et en comparant les deux simulations à un temps donné (par exemple après 4 minutes).
  ​S-Curve + Delay for Bell Curve Showing Erlang Distribution      Generation of Bell Curve from Initial Market through Delay in Pickup of Customers     This provides the beginning of an Erlang distribution model      The  Erlang distribution  is a two parameter family of continuous  probability dis
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

In mathematics, a Lissajous curve /ˈlɪsəʒuː/, also known as Lissajous figure or Bowditch curve /ˈbaʊdɪtʃ/, is the graph of a system of parametric equations {\displaystyle x=A\sin(at+\delta ),\quad y=B\sin(bt),} which describe complex harmonic motion. This family of curves was investigated by Nathani
In mathematics, a Lissajous curve /ˈlɪsəʒuː/, also known as Lissajous figure or Bowditch curve /ˈbaʊdɪtʃ/, is the graph of a system of parametric equations
{\displaystyle x=A\sin(at+\delta ),\quad y=B\sin(bt),}

which describe complex harmonic motion. This family of curves was investigated by Nathaniel Bowditch in 1815, and later in more detail by Jules Antoine Lissajous in 1857.