Eastern oyster growth model calibrated for Long Island Sound  This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)  1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;
Eastern oyster growth model calibrated for Long Island Sound

This is a one box model for an idealized farm with one million oysters seeded (one hectare @ a stocking density of 100 oysters per square meter)

1. Run WinShell individual growth model for one year with Long Island Sound growth drivers;

2. Determine the scope for growth (in dry tissue weight per day) for oysters centered on the five weight classes)
 
3. Apply a classic population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)

4. Set mortality at 30% per year, slider allows scenarios from 30% to 80% per year

5. Determine harvestable biomass, i.e. weight class 5, 40-50 g (roughly three inches length)
 In 2012, the City of Vancouver created a sustainability strategy for staying on the leading edge of urban development called the “Greenest City: 2020 Action Plan (GCAP)” [ 1 — Open in Pop-up ]. In the report, the GCAP noted that its highest priority action was to encourage the use of electric vehic

In 2012, the City of Vancouver created a sustainability strategy for staying on the leading edge of urban development called the “Greenest City: 2020 Action Plan (GCAP)” [1Open in Pop-up]. In the report, the GCAP noted that its highest priority action was to encourage the use of electric vehicle transport in both public and private sectors. Since then, programs such as the Clean Energy Vehicle (CEV) program have been revamped to encourage consumers to choose the greener choice, often rewarding owners with up to $5000 in incentives for battery-powered vehicles and plug-in hybrids. However, the benefits of choosing electric cars are not all clear as several reports have found that hybrid electric vehicles (HEV), plug-in electric hybrid vehicles (PHEV), and battery electric cars (BEV) generate more carbon emissions during their production than current conventional vehicles [2]. I thought it would be interesting to study this sustainability issue through a systems model to determine how much impact it has on the environment compared to conventional vehicles. 

https://insightmaker.com/insight/159243/CO2-Emissions-by-Vehicle-Type-Gasoline-vs-Electric

Our model explores both carbon emissions of standard gasoline vehicles and electric vehicles from production to distribution in Canada specifically. Unfortunately, we were unable to find any statistics regarding the number of electric vehicles in production in Canada, so we have used the sales number as our production number estimate. For CO2 emission statistics, we made sure to carefully separate different types of electric vehicles as the production of the battery in battery electric vehicles have significantly more carbon emissions during production.

As expected, the carbon emissions from electric vehicles are much lower than those of gasoline vehicles after taking into account the lifecycle emissions from an average lifespan of 8 years on the road (which is the standard warranty length offered from most car companies). Some interesting things to note are that with our current rise in electric vehicle adoption, electric vehicles will dominate the roads in about 100 years. This transformation may be further accelerated by the large-scale initiatives offered by governmental organizations and increased awareness for sustainable practices. Furthermore, it was very surprising to find that electric vehicle carbon emissions will exceed that of gasoline vehicles after nearly 1000 years, but after further analysis, this makes sense as by then electric vehicles will greatly outnumber gasoline vehicles. This means that electric vehicles are not only the greener choice -- electric vehicles are by far the greenest choice as it will take nearly a thousand years before its emissions will be equal to that of its gasoline counterpart. In fact, it may even take longer than 1000 years for electric vehicles to emit more carbon emissions than gasoline vehicles if we continue looking for more sustainable methods for producing electricity and proactively choose renewable energy over fossil fuels.

Sources:

[1] https://vancouver.ca/files/cov/Greenest-city-action-plan.pdfOpen in Pop-up

[2] http://www.ccsenet.org/journal/index.php/jsd/article/view/64183

Statistics for number of gasoline and electric vehicle sales:

Gasoline Vehicles: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2010000201

Electric Vehicles: https://www.fleetcarma.com/electric-vehicle-sales-canada-2017/
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.        Ecocity model , Joanna       http://www.divaportal.se/sm
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.


Ecocity model , Joanna 

This diagram provides an accessible description of the key processes that guide the water quality within a lake.
This diagram provides an accessible description of the key processes that guide the water quality within a lake.
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp
Simple model to illustrate   algal  ,   growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.

  Biogas, model  as well birefineray option to seperate c02 , chp from bogas model are proposed
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
The time-variable solution to a step-function change in inflow concentration for an ideal, completely mixed lake.
My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
 Harvested fishery with stepwise changes in fleet size. Ch 9 p337-339 John Morecroft (2007) Strategic Modelling and Business Dynamics

Harvested fishery with stepwise changes in fleet size. Ch 9 p337-339 John Morecroft (2007) Strategic Modelling and Business Dynamics

Model of how different features impact water supply and how water access disparity can influence conflict.
Model of how different features impact water supply and how water access disparity can influence conflict.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at  https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions  Thanks Scott Fortmann-Roe.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale. It was "cloned" from a model that InsightMaker provides to its users, at
https://insightmaker.com/insight/2068/Isle-Royale-Predator-Prey-Interactions
Thanks Scott Fortmann-Roe.

I've created a Mathematica file that replicates the model, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker.nb

It allows one to experiment with adjusting the initial number of moose and wolves on the island.

I used steepest descent in Mathematica to optimize the parameters, with my objective data being the ratio of wolves to moose. You can try my (admittedly) kludgy code, at
http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-BestFit.nb

{WolfBirthRateFactorStart,
WolfDeathRateStart,
MooseBirthRateStart,
MooseDeathRateFactorStart,
moStart,
woStart} =
{0.000267409,
0.239821,
0.269755,
0.0113679,
591,
23.};

Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
 This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow in

This story contains a conceptual model of phosphorus cycling in a dune-lake system in the Northland region of New Zealand. It is based on the concept of a stock and flow diagram. Each orange ellipse represents an input, while each blue box represents a stock. Each arrow represents a flow. A flow involves a loss from the stock at which it starts and an addition to the stock at which it ends.

This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Example of ​rIsk assessment on component of the building
Example of ​rIsk assessment on component of the building
Our computer model details the change in allele frequency of resistant mosquitoes in Africa when the government began spraying DDT. The few mosquitoes that naturally survived the chemical sprays reproduced, and created a large population of resistant mosquitoes. When DDT was sprayed later to prevent
Our computer model details the change in allele frequency of resistant mosquitoes in Africa when the government began spraying DDT. The few mosquitoes that naturally survived the chemical sprays reproduced, and created a large population of resistant mosquitoes. When DDT was sprayed later to prevent the spread of malaria, the DDT was not as effective because of the large amount of DDT-resistant phenotypes in the population.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


The Streeter-Phelps oxygen dynamics model was originally developed in 1925, almost a century ago.  Play  You can explore the model by hitting the simulate button, and you can use the three sliders below to (i) switch the spill on or off (1 or 0); (ii) define the day when the spill occurs (0 to 15);
The Streeter-Phelps oxygen dynamics model was originally developed in 1925, almost a century ago.

Play

You can explore the model by hitting the simulate button, and you can use the three sliders below to (i) switch the spill on or off (1 or 0); (ii) define the day when the spill occurs (0 to 15); and (iii) make the model use a constant water temperature (20oC) or a (pre-defined) variable one.

A variable temperature affects oxygen saturation, and therefore also the oxygen deficit and oxygen concentration.

Every model element shows an = sign when you hover over it, and if you click the sign you can view the underlying equation.

If you want to edit the model, you need to create an account in InsightMaker and then clone the model and adapt it to your needs.

Study

Below is a detailed explanation of the model concept.

The model calculates the oxygen deficit (D), defined as Cs-C, where Cs is the saturation concentration of dissolved oxygen (based on temperature, and salinity if applicable), and C is the dissolved oxygen concentration.

Since D = Cs-C, it follows that:
dD/dt = -dC/dt

The rate of change of oxygen concentration with time (dC/dt) depends on two factors, organic decomposition and aeration.

dC/dt = Ka.D - Kd.L

The first term on the right side of the equation is aeration (which adds oxygen to the water), calculated by means of the temperature-dependent aeration parameter Ka.

Ka is also a function of Kr, which depends on wind speed (U) and water depth (z).

The sink term represents oxygen consumption through mineralization (bacterial decomposition) of organic matter.

The organic load L decays in time (or in space, e.g. along a river) according to a first order equation, i.e. dL/dt = -Kd.L

This equation can be integrated to yield L = Lo.exp(Kd.t), where Kd is the decay constant.