all pictures sourced from google images
all pictures sourced from google images

Clone of Pesticide Use in Central America for Lab work        This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.     The cotto
Clone of Pesticide Use in Central America for Lab work


This model is an attempt to simulate what is commonly referred to as the “pesticide treadmill” in agriculture and how it played out in the cotton industry in Central America after the Second World War until around the 1990s.

The cotton industry expanded dramatically in Central America after WW2, increasing from 20,000 hectares to 463,000 in the late 1970s. This expansion was accompanied by a huge increase in industrial pesticide application which would eventually become the downfall of the industry.

The primary pest for cotton production, bol weevil, became increasingly resistant to chemical pesticides as they were applied each year. The application of pesticides also caused new pests to appear, such as leafworms, cotton aphids and whitefly, which in turn further fuelled increased application of pesticides. 

The treadmill resulted in massive increases in pesticide applications: in the early years they were only applied a few times per season, but this application rose to up to 40 applications per season by the 1970s; accounting for over 50% of the costs of production in some regions. 

The skyrocketing costs associated with increasing pesticide use were one of the key factors that led to the dramatic decline of the cotton industry in Central America: decreasing from its peak in the 1970s to less than 100,000 hectares in the 1990s. “In its wake, economic ruin and environmental devastation were left” as once thriving towns became ghost towns, and once fertile soils were wasted, eroded and abandoned (Lappe, 1998). 

Sources: Douglas L. Murray (1994), Cultivating Crisis: The Human Cost of Pesticides in Latin America, pp35-41; Francis Moore Lappe et al (1998), World Hunger: 12 Myths, 2nd Edition, pp54-55.

Simple model of the global economy, the global carbon cycle, and planetary energy balance.    The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial c
Simple model of the global economy, the global carbon cycle, and planetary energy balance.

The planetary energy balance model is a two-box model, with shallow and deep ocean heat reservoirs. The carbon cycle model is a 4-box model, with the atmosphere, shallow ocean, deep ocean, and terrestrial carbon. 

The economic model is based on the Kaya identity, which decomposes CO2 emissions into population, GDP/capita, energy intensity of GDP, and carbon intensity of energy. It allows for temperature-related climate damages to both GDP and the growth rate of GDP.

This model was originally created by Bob Kopp - https://insightmaker.com/user/16029 (Rutgers University) in support of the SESYNC Climate Learning Project.

Steve Conrad (Simon Fraser University) modified the model to include emission/development/and carbon targets for the use by ENV 221.
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
A system diagram for the Mojave Desert for an assignment at OSU- RNG 341.
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.  The converter in this file contains precipitation for Phoenix only.
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
107 2 months ago
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
This model prototypes the working of an Smart Grid with Electric Vehicles   The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehi
This model prototypes the working of an Smart Grid with Electric Vehicles

The objective is testing the theoretical advantages of batteries (also batteries in Electric Vehicles) in combination with renewable energies. The model considers two houses, that store energy both in Electric Vehicles (Vehicle to Grid), and in a communal battery.

Except when specified otherwise, the units of all variables are expressed in W/h.

Press "Story" in the lower bar for a guided tour over the model. Better seen at 50% zoom.

by Carlos Varela (cvarela@gmx.at)
My AP Environmental Homework for the Cats Over Borneo Assignment
My AP Environmental Homework for the Cats Over Borneo Assignment
HANDY Model of Societal Collapse from Ecological Economics  Paper   see also D Cunha's model at  IM-15085  (Spanish)
HANDY Model of Societal Collapse from Ecological Economics Paper 
see also D Cunha's model at IM-15085 (Spanish)
19 3 months ago
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.  Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where:   Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]
Simple model to illustrate oyster growth based on primary production of Phytoplankton as a state variable, forced by light and nutrients, running for a yearly period.

Phytoplankton growth based on on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Further developments:
- Nutrients as state variable in cycle with detritus from phytoplankton and oyster biomass.
- Light limited by the concentration of phytoplankton.
- Temperature effect on phytoplankton and Oyster growth.


This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
This model describes the flow of energy from generation to consumption for neighborhoods in the metro Atlanta area. It also calculates the cost of energy production and the number of years it will take to recover that cost.
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.  The equation is:  P = Ppot S / (Ks + S)  Where:  P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1) Ppot: Potential production (same units as P) S: Nutrient concentation (e.g. umol N L-1) Ks: Half sat
Simple model to illustrate Michaelis-Menten equation for nutrient uptake by phytoplankton.

The equation is:

P = Ppot S / (Ks + S)

Where:

P: Nutrient-limited production (e.g. d-1, or mg C m-2 d-1)
Ppot: Potential production (same units as P)
S: Nutrient concentation (e.g. umol N L-1)
Ks: Half saturation constant for nutrient (same units as S)

The model contains no state variables, just illustrates the rate of production, by making the value of S equal to the timestep (in days). Move the slider to the left for more pronounced hyperbolic response, to the right for linear response.
Simple model to illustrate a simple simulation of the microalgae biomass production, focusing on the dependent variables such as light, nutrients and other factor that is running for a yearly period.  The biomass model uses an example, Phytoplankton growth based on Steele's and Michaelis-Menten equa
Simple model to illustrate a simple simulation of the microalgae biomass production, focusing on the dependent variables such as light, nutrients and other factor that is running for a yearly period.

The biomass model uses an example, Phytoplankton growth based on Steele's and Michaelis-Menten equations), where: 

Primary Production=(([Pmax]*[I]/[Iopt]*exp(1-[I]/[Iopt])*[S])/([Ks]+[S]))

Pmax: Maximum production (d-1)
I: Light energy at depth of interest (uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (uE m-2 s-1)
S: Nutrient concentration (umol N L-1)
Ks: Half saturation constant for nutrient (umol N L-1).

Once this is understood, it looks upon the viability of biogas production from the microalgae biomass.


This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.  It illustrates a number of interesting features including the coupling of three state variables in a
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.

It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.

The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:

Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
 
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.

This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Simple model to illustrate Steele's equation for primary production of phytoplankton.  The equation is:  Ppot = Pmax I/Iopt exp(1-I/Iopt)  Where:  Ppot: Potential production (e.g. d-1, or mg C m-2 d-1) Pmax: Maximum production (same units as Ppot) I: Light energy at depth of interest (e.g. uE m-2 s-
Simple model to illustrate Steele's equation for primary production of phytoplankton.

The equation is:

Ppot = Pmax I/Iopt exp(1-I/Iopt)

Where:

Ppot: Potential production (e.g. d-1, or mg C m-2 d-1)
Pmax: Maximum production (same units as Ppot)
I: Light energy at depth of interest (e.g. uE m-2 s-1)
Iopt: Light energy at which Pmax occurs (same units as I)

The model contains no state variables, just illustrates the rate of production, by making the value of I equal to the timestep (in days). Move the slider to the left for more pronounced photoinhibition, to the right for photosaturation.
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems. See also A Prosperous Way Down  website
This is to support a discussion on money flows and growth. Money as a lubricant for the flow of embodied energy in human systems.
See also A Prosperous Way Down website
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.