This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This stock and flow diagram is a working draft of a conceptual model of a dune-lake system in the Northland region of New Zealand.

This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Simple (Kind of) food web of the Cane Toad Species. Includes different levels of consumers including predators.
Logistic growth of an antelope population to a carrying capacity.
Logistic growth of an antelope population to a carrying capacity.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Model prognozuje wpływ dystrybucji subwencji w ramach WPR na strukturę obszarową i intensywność produkcji gospodarstw rolnych w Polsce. Struktura obszarowa gospodarstw decyduje o stopniu mozaikowatości krajobrazu wiejskiego a intensywność produkcji przekłada się na bilans węgla i azotu użytków rolny
Model prognozuje wpływ dystrybucji subwencji w ramach WPR na strukturę obszarową i intensywność produkcji gospodarstw rolnych w Polsce. Struktura obszarowa gospodarstw decyduje o stopniu mozaikowatości krajobrazu wiejskiego a intensywność produkcji przekłada się na bilans węgla i azotu użytków rolnych. W oparciu o te dane szacowane są popularne wskaźniki jakości środowiska: zmiany zawartości materii organicznej w glebach, odpływ azotu do wód gruntowych i liczebność pospolitych ptaków krajobrazu wiejskiego.

Model opracowano w ramach Programu Wieloletniego IUNG-PIB w zadaniu 2.1 i jest obecnie rozwijany w zadaniu 1.9.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This model depicts a very simplified series of interactions between water quality inspectors and cannabis cultivators in northern California.
This diagram provides a stylised description of important feedbacks within a shallow-lake system.     Mahinga Kai
This diagram provides a stylised description of important feedbacks within a shallow-lake system.
Mahinga Kai
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:  dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)  Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-se
This model implements the one-dimensional version of the advection-dispersion equation for an estuary. The equation is:

dS/dt = (1/A)d(QS)/dx - (1/A)d(EA)/dx(dS/dx) (Eq. 1)

Where S: salinity (or any other constituent such as chlorophyll or dissolved oxygen), (e.g. kg m-3); t: time (s); A: cross-sectional area (m2); Q: river flow (m3 s-1); x: length of box (m); E: dispersion coefficient (m2 s-1).

For a given length delta x, Adx = V, the box volume. For a set value of Q, the equation becomes:

VdS/dt = QdS - (d(EA)/dx) dS (Eq. 2)

EA/x, i.e. (m2 X m2) / (m s) = E(b), the bulk dispersion coefficient, units in m3 s-1, i.e. a flow, equivalent to Q

At steady state, dS/dt = 0, therefore we can rewrite Eq. 2 for one estuarine box as:

Q(Sr-Se)=E(b)r,e(Sr-Se)-E(b)e,s(Se-Ss) (Eq. 3)

Where Sr: river salinity (=0), Se: mean estuary salinity; Ss: mean ocean salinity

E(b)r,e: dispersion coefficient between river and estuary, and E(b)e,s: dispersion coefficient between the estuary and ocean.

By definition the value of E(b)r,e is zero, otherwise we are not at the head (upstream limit of salt intrusion) of the estuary. Likewise Sr is zero, otherwise we're not in the river. Therefore:

QSe=E(b)e,s(Se-Ss) (Eq. 4)

At steady state

E(b)e,s = QSe/(Se-Ss) (Eq 5)

The longitudinal dispersion simulates the turbulent mixiing of water in the estuary during flood and ebb, which supplies salt water to the estuary on the flood tide, and make the sea a little more brackish on the ebb.

You can use the slider to turn off dispersion (set to zero), and see that if the tidal wave did not mix with the estuary water due to turbulence, the estuary would quickly become a freshwater system.
Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
First level of slowly building up a generic cost-benefit model primarily to show T313 students but useful elsewhere
First level of slowly building up a generic cost-benefit model primarily to show T313 students but useful elsewhere
Simple mass balance model for lakes, based on the Vollenweider equation:  dMw/dt = Min - sMw - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes, based on the Vollenweider equation:

dMw/dt = Min - sMw - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs, for eutrophication assessment.
Simple mass balance model for lakes based on the Vollenweider equation:  dMw/dt = Min - sMw + pMs - Mout  The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.  This version considers mercury, and adds diagenesis, using
Simple mass balance model for lakes based on the Vollenweider equation:

dMw/dt = Min - sMw + pMs - Mout

The model was first used in the 1960s to determine the phosphorus concentration in lakes and reservoirs for eutrophication assessment.

This version considers mercury, and adds diagenesis, using an extra state variable (mercury in the sediment), and incorporates desorption processes that release mercury trapped in the sediment back to the water column.

The temporal dynamics of the model simulate the typical development of pollution in time.

1. Low loading, low Hg concentration in lake
2. High loading, increasing Hg concentration in lake
3. Desorption rate is low, Hg in sediment increases
4. Measures implemented for source control, loading reduces
5. Hg in lake gradually decreases, but below a certain point, desorption increases, and lake Hg concentration does not improve
6. Recovery only occurs when the secondary load in the sediment is strongly reduced.
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue
Marine plastic is rapidly increasing due to increasing production and use of plastic in all economic activities, short use times and long life times of plastic, and large mismanagement of plastic waste. With this, the threat plastic poses to the marine biosphere is also increasing and will continue to increase over a long time into the future. Risk knowledge is limited and risk perception and awareness are not resulting in significant mitigation efforts. The case study will aim at modeling the use and life cycles of plastic and the transport paths that lead to plastic entering the ocean. The models will be used to simulate possible futures based on a scenario approach. The results of these efforts will be visualized with the goal to increase risk awareness.