Show relation of birth and death rate over time, creating the elements of the demographic transition. This one is for Australia. You can clone this insight for other nations, just plug in the new crude birth and death rates and find the starting population in 1960.
Show relation of birth and death rate over time, creating the elements of the demographic transition. This one is for Australia. You can clone this insight for other nations, just plug in the new crude birth and death rates and find the starting population in 1960.
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
A quick population rate model to help get acquainted to modular designs.
A quick population rate model to help get acquainted to modular designs.
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
 This is a basic model for use with our lab section.  The full BIDE options.

This is a basic model for use with our lab section.  The full BIDE options.

 This is a basic model for use with our lab section.  The full BIDE options.

This is a basic model for use with our lab section.  The full BIDE options.

  ​Predator-prey
models are the building masses of the bio-and environments as bio
masses are become out of their asset masses. Species contend, advance and
scatter essentially to look for assets to support their battle for their very
presence. This model is designed to represent the moose and wolf

​Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. This model is designed to represent the moose and wolf population on Isle Royal. The variables include moose population, wolf population, moose birth rate, wolf birth rate, moose death proportionality constant, and wolf death proportionality constant. This model was adapted from https://insightmaker.com/insight/3A0dqQnXXh8zxWJtkwwAH9/Lotka-Volterra-Model-Prey-Predator-Simulation.

 Looking at Lotka-Volterra Model:

The well known Italian mathematician Vito Volterra proposed a differential condition model to clarify the watched increment in predator fish in the Adriatic Sea during World War I. Simultaneously in the United States, the conditions contemplated by Volterra were determined freely by Alfred Lotka (1925) to portray a theoretical synthetic response wherein the concoction fixations waver. The Lotka-Volterra model is the least complex model of predator-prey communications. It depends on direct per capita development rates, which are composed as f=b−py and g=rx−d. 

A detailed explanation of the parameters:

  • The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative. 
  • The parameter p estimates the effect of predation on x˙/x. 
  • The parameter d is the death rate of species y without connection with species x. 
  • The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

https://insightmaker.com/insight/3A0dqQnXXh8zxWJtkwwAH9/Lotka-Volterra-Model-Prey-Predator-Simulation

 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 ​Physical meaning of the equations  The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:        1. The prey population finds ample food at all times.    2. The food supply of the predator population depends entirely on the
​Physical meaning of the equations
The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


Shows a projection of birth and death rate over time, creating the elements of the demographic transition. This one is for Tanzania.
Shows a projection of birth and death rate over time, creating the elements of the demographic transition. This one is for Tanzania.
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION     BEWARE pushing increased growth blows the system!    (governments are trying to push growth on already unstable systems !)  The existing global capitalistic growth paradigm is totally flawed  The chaotic turbulence is the result of th
FORCED GROWTH GROWTH GOES INTO TURBULENT CHAOTIC DESTRUCTION 
 BEWARE pushing increased growth blows the system!
(governments are trying to push growth on already unstable systems !)

The existing global capitalistic growth paradigm is totally flawed

The chaotic turbulence is the result of the concept and flawed strategy of infinite bigness this has been the destructive influence on all empires and now shown up by Feigenbaum numbers and Dunbar numbers for neural netwoirks

See Guy Lakeman Bubble Theory for more details on keeping systems within finite limited size working capacity containers (villages communities)

Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Een dynamisch model over een prooi predator relatie tussen verschillende populaties onder invloed van abiotische factoren.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 This is a basic model for use with our lab section.  The full BIDE options.

This is a basic model for use with our lab section.  The full BIDE options.

Modelagem do estado psicológico de uma população. Inicialmente, todos os indivíduos estão no estado "Calmo". Com o passar do tempo e com as interações mútuas, há o surgimento e progressivo aumento do total de indivíduos com raiva (estado "Raivoso"). Deste estado e, com o passar do tempo, os indivídu
Modelagem do estado psicológico de uma população. Inicialmente, todos os indivíduos estão no estado "Calmo". Com o passar do tempo e com as interações mútuas, há o surgimento e progressivo aumento do total de indivíduos com raiva (estado "Raivoso"). Deste estado e, com o passar do tempo, os indivíduos podem evoluir mentalmente e atingirem o estado "Indiferente", nos quais eles se tornam indiferentes à qualquer interação. Outra possibilidade é o indivíduo se enriquecer e, assim, atingir a felicidade (estado "Feliz").
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5. The equation for DeltaN is a version of  Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj  the maximum population is set to be one million, and the growth rate constant mu
The simulation integrates or sums (INTEG) the Nj population, with a change of Delta N in each generation, starting with an initial value of 5.
The equation for DeltaN is a version of 
Nj+1 = Nj  + mu (1- Nj / Nmax ) Nj
the maximum population is set to be one million, and the growth rate constant mu = 3.
 
Nj: is the “number of items” in our current generation.

Delta Nj: is the “change in number of items” as we go from the present generation into the next generation. This is just the number of items born minus the number of items who have died.

mu: is the growth or birth rate parameter, similar to that in the exponential growth and decay model. However, as we extend our model it will no longer be the actual growth rate, but rather just a constant that tends to control the actual growth rate without being directly proportional to it.

F(Nj) = mu(1‐Nj/Nmax): is our model for the effective “growth rate”, a rate that decreases as the number of items approaches the maximum allowed by external factors such as food supply, disease or predation. (You can think of mu as the growth or birth rate in the absence of population pressure from other items.) We write this rate as F(Nj), which is a mathematical way of saying F is affected by the number of items, i.e., “F is a function of Nj”. It combines both growth and all the various environmental constraints on growth into a single function. This is a good approach to modeling; start with something that works (exponential growth) and then modify it incrementally, while still incorporating the working model.

Nj+1 = Nj + Delta Nj : This is a mathematical way to say, “The new number of items equals the old number of items plus the change in number of items”.

Nj/Nmax: is what fraction a population has reached of the maximum "carrying capacity" allowed by the external environment. We use this fraction to change the overall growth rate of the population. In the real world, as well as in our model, it is possible for a population to be greater than the maximum population (which is usually an average of many years), at least for a short period of time. This means that we can expect fluctuations in which Nj/Nmax is greater than 1.

This equation is a form of what is known as the logistic map or equation. It is a map because it "maps'' the population in one year into the population of the next year. It is "logistic'' in the military sense of supplying a population with its needs. It a nonlinear equation because it contains a term proportional to Nj^2 and not just Nj. The logistic map equation is also an example of discrete mathematics. It is discrete because the time variable j assumes just integer values, and consequently the variables Nj+1 and Nj do not change continuously into each other, as would a function N(t). In addition to the variables Nj and j, the equation also contains the two parameters mu, the growth rate, and Nmax, the maximum population. You can think of these as "constants'' whose values are determined from external sources and remain fixed as one year of items gets mapped into the next year. However, as part of viewing the computer as a laboratory in which to experiment, and as part of the scientific process, you should vary the parameters in order to explore how the model reacts to changes in them.