This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
This model is under construction, not at all ready, don't use it for any purposes (my suggestion ☺) yet.
This model is under construction, not at all ready, don't use it for any purposes (my suggestion ☺) yet.

Assessment 4.  This model highlights the interdependent relationship between:    - Police funding  - Community Development  - Youth Alienation  And the impact they have on youth engagement levels over time in the NSW town of Bourke.    Assumptions        The model assumes the youth population of bou
Assessment 4.

This model highlights the interdependent relationship between:

- Police funding
- Community Development
- Youth Alienation

And the impact they have on youth engagement levels over time in the NSW town of Bourke. 

Assumptions

The model assumes the youth population of bourke to be 1000 people. 

Constants

-Community Group effect is delayed by 3 months, aligning the model to seasonality to account for the large impact seasonal sport has on rural community.

- 20% of youth will disengage with the community after realising the development funding doesn't align to their interests. 

- 80% of disengaged youth will be at risk of committing a crime.

- 19% of youth arrested will have their charges dropped

- 81% will have a conviction recorded 

- 21% of detained youth will be rehabilitated in line with the NSW average.

- 79% of detained youth will re-offend in line with the NSW average. 

Variables

- Police Force Funding can be adjusted upward or downward to simulate the effect on engagement, disengagement and crime levels. 

- Community Development Funding can be adjusted to simulate the positive effect developing programs and opportunity for youth in Bourke may have on their engagement in society and the overall crime rate amongst their cohort. 

- Youth Alienation slider allows the rate of youth alienation (Exposure to violence, drugs, alcohol. Lack of training, education and opportunity), to be slowed and speed up to simulate the impact it has on engagement and crime levels. 

 Woodland caribou is a species at risk because of northward expansion of resource development activity.  Some herds are in dire condition and well below self-sustainability, while others are only moderately below self-sustaining levels.  Given limited conservation dollars, what are the most effectiv
Woodland caribou is a species at risk because of northward expansion of resource development activity.  Some herds are in dire condition and well below self-sustainability, while others are only moderately below self-sustaining levels.  Given limited conservation dollars, what are the most effective conservation actions, and how much money needs to be spent?  Which herds should be a priority for conservation efforts? The purpose of this model to provide insight into these difficult conservation questions.  

This model was developed by Rob Rempel and Jen Shuter, and was based in part on input from attendees of a modelling workshop ("Modelling the Caribou Questions") held at the 16th North American Caribou Workshop in Thunder Bay, Ontario, May 2016.
A simple simulation used to observe the California Yellowtail population in San Diego
A simple simulation used to observe the California Yellowtail population in San Diego
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
  ​Climate Sector Boundary Diagram By Guy Lakeman    Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)      As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old),
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
A detailed insight map into the current population trends surrounding koalas and the different variables involved which will influence these trends in years to come.
A detailed insight map into the current population trends surrounding koalas and the different variables involved which will influence these trends in years to come.
This in-depth concept map portrays the factors influencing koala births and deaths in SEQ. It also shows that the eucalyptus tree population in SEQ is vital for the survival of the koala.
This in-depth concept map portrays the factors influencing koala births and deaths in SEQ. It also shows that the eucalyptus tree population in SEQ is vital for the survival of the koala.
 Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Exploring the conditions of permanent coexistence, rather than gradual disappearance of disadvantaged competitors. ​Z506 p32-35 System Zoo 3 by Hartmut Bossel.

Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
Simulation of how tiger population and anti poaching efforts effect the black market value of tiger organs.
 This model has two main components. First is modelling the change in population composition as non-First Nations immigration increases with the opening of new mines in the region. The second is modelling the increasing income disparity between First Nations and non-First Nations as mining jobs are

This model has two main components. First is modelling the change in population composition as non-First Nations immigration increases with the opening of new mines in the region. The second is modelling the increasing income disparity between First Nations and non-First Nations as mining jobs are disproportionately gained by non-First Nations workers.

    Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly int

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


Influence of migration on the number of working-age population.
Influence of migration on the number of working-age population.