This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
This model uses simple functions (converters, cosine) to simulate the water balance inside a reservoir.
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems.  Ecology and Society   18 (3): 27.  link
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Here is an average representation of Earth today. Enjoy!
Here is an average representation of Earth today. Enjoy!
 The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.  
 Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amo

The World3 model is a detailed simulation of human population growth from 1900 into the future. It includes many environmental and demographic factors.


Use the sliders to experiment with the initial amount of non-renewable resources to see how these affect the simulation. Does increasing the amount of non-renewable resources (which could occur through the development of better exploration technologies) improve our future? Also, experiment with the start date of a low birth-rate, environmentally focused policy.

Simple conceptual site model of AFFF PFAS site contamination fluxes.
Simple conceptual site model of AFFF PFAS site contamination fluxes.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about

The body of research and studies generated on the Fryingpan River between the 1940s and the present supports the development of a conceptual model of ecosystem responses to hydrological regime behavior and streamflow management activities. This conceptual model should encourage conversations about system behavior and collective understanding among stakeholders regarding connections between specific hydrological regime characteristics affected by management of Ruedi Reservoir and the ecological or biological variables important to local communities. For the sake of simplicity, the model includes mostly unidirectional relationships—feedback loops are exploded to reveal intermediate connections between variables. This approach increases the number of variables represented in the system, perhaps increasing its complexity at first glance. However, the primary benefit to the end user is that the model becomes more readable and explicit in its representation of system behavior. 

 

The conceptual model presented here likely differs by degrees from those held by the various investigators who considered Fryingpan River processes over the previous 80 years. However, it affectively aggregates the ideas main presented by each of those individuals. This model focuses on hydrological and biological variables and does not incorporate the entire diversity of human uses and needs for water from the Fryingpan River (e.g. hydropower production for the City of Aspen, revenue generated in the Town of Basalt by angling activities, etc.).  Rather it attempts to illustrate how the conditional state of important ecosystem characteristics might respond to reservoir management activities that impact typical spring flows, peak flow timing and magnitude, summer flows, fall flows, and winter flows. 

M.Sc. in Environmental Engineering SIMA 2018 New University of Lisbon, Portugal   Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature
M.Sc. in Environmental Engineering SIMA 2018
New University of Lisbon, Portugal

 Model to represent oyster individual growth by simulating feeding and metabolism. Model (i) partitions metabolic costs into feeding and fasting catabolism; (ii) adds allometry to clearance rate; (iii) adds temperature dependence to clearance rate; (iv) illustrates how coupled model requires a substantial volume of water (a single oyster typically clears 20-30 m3 of water in one growth cycle)
 STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

 From Jay Forrester 1971 Book  World Dynamics , the earlier, simpler version of the  World 3   Limits to Growth  Model. adapted from Mark Heffernan's ithink version at  Systemswiki .  An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at  http://w

From Jay Forrester 1971 Book World Dynamics, the earlier, simpler version of the World 3 Limits to Growth Model. adapted from Mark Heffernan's ithink version at Systemswiki.

An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at http://www.systemswiki.org/

32 last month
Polyrhachis identification chart Not aware of your Polyrhachis identification type, use this to help identify it.     (Not all species listed) (all located on Australia)
Polyrhachis identification chart
Not aware of your Polyrhachis identification type, use this to help identify it.

(Not all species listed) (all located on Australia)
In Chile,  60% of its population are exposed to levels of Particulate Matter (PM) above international standards . Air Pollution is causing  4,000 premature deaths per year , including health costs over US$8 billion.    The System Dynamics Causal Loop Diagram developed herein shows an initial study o
In Chile, 60% of its population are exposed to levels of Particulate Matter (PM) above international standards. Air Pollution is causing 4,000 premature deaths per year, including health costs over US$8 billion.

The System Dynamics Causal Loop Diagram developed herein shows an initial study of the dynamics among the variables that influences the accumulation of PM in the air, in particular the case of Temuco, in the South of Chile. In Temuco, 97% of the PM inventories comes from the combustion of low quality firewood, which in turns is being burned due to its low price and cultural habits/tradition.
Examining the population growth of a species and how reproductive technology influences its population as an endangered species.
Examining the population growth of a species and how reproductive technology influences its population as an endangered species.
European Masters in System Dynamics 2016 New University of Lisbon, Portugal  Simple model to represent oyster individual growth by simulating feeding and metabolism.
European Masters in System Dynamics 2016
New University of Lisbon, Portugal

Simple model to represent oyster individual growth by simulating feeding and metabolism.
Simple model illustrating the population dynamics equation:  dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)  s: Weight (g) t: Time n: Number of individuals of weight s g: Scope for growth (g day-1) u: Mortality rate (day-1)
Simple model illustrating the population dynamics equation:

dn(s,t)/dt = -d[n(s,t)g(s,t)]/ds - u(s)n(s,t)

s: Weight (g)
t: Time
n: Number of individuals of weight s
g: Scope for growth (g day-1)
u: Mortality rate (day-1)
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.
This is a two-stock (ocean and atmosphere) climate model simulating the behavior of the earth climate from time zero. The initial conditions of the stocks are also set zero, so it demonstrates how long the earth takes to reach the temperature suitable for life.