Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
  Overview     This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.      Model   W  ork     The tourism industry is represented on the model's left side, and the logging industry is on the right

Overview

This model simulates logging and mountain biking competition in Derby, Tasmania. The Simulation is referenced to simulate Derby mountain biking with logging.

 

Model Work

The tourism industry is represented on the model's left side, and the logging industry is on the right side. Interactions between these two industries generate tax revenues. Logging and tourism have different growth rates regarding people working/consuming. The initial values of these two industries in the model are not fixed but increase yearly due to inflation or economic growth.

 

Detail Insights

From the perspective of tourism, as the number of tourists keeps growing, the number of people who choose to ride in Derby City also gradually increases. And the people who ride rate the ride. The negative feedback feeds back into the cycling population. Similarly, positive cycling reviews lead to more customer visits. And all the customers will create a revenue through tourism, and a certain proportion of the income will become tourism tax.

From a logging perspective, it is very similar to the tourism industry. As the number of people working in the industry is forecast to increase, the industry's overall size is predicted to grow. And as the industry's size continues to rise, the taxes on the logging industry will also continue to rise. Since logging is an industry, the tax contribution will be more significant than the tourism excise tax.

 

This model assumption is illustrated below:

1. The amount of tax reflects the level of industrial development.

2. The goal of reducing carbon emissions lets us always pay attention to the environmental damage caused by the logging industry.

3. The government's regulatory goal is to increase overall income while ensuring the environment.

4. Logging will lead to environmental damage, which will decrease the number of tourists.

 

This model is based on tourism tax revenue versus logging tax revenue. Tourism tax revenue is more incredible than logging tax revenue, indicating a better environment. As a result of government policy, the logging industry will be heavily developed in the short term. Growth in the logging industry will increase by 40%. A growth rate of 0.8 and 0.6 of the original is obtained when logging taxes are 2 and 4 times higher than tourism taxes.

 

Furthermore, tourism tax and logging tax also act on the positive rate, which is the probability that customers give a positive evaluation. The over-development of the logging industry will lead to the destruction of environmental resources and further affect the tourism industry. The logging tax will also affect the tourism Ride Rate, which is the probability that all tourism customers will choose Derby city.

 

This model more accurately reflects logging and tourism's natural growth and ties the two industries together environmentally. Two ways of development are evident in the two industries. Compared to tourism, logging shows an upward spiral influenced by government policies. Government attitudes also affect tourism revenue, but more by the logging industry. 

Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
To maintain economic wealth (roads, hospitals, power
lines, etc.) power needs to be consumed. The same applies to economic activity,
since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning
of fossil fuels was responsible for 79 percent of
To maintain economic wealth (roads, hospitals, power lines, etc.) power needs to be consumed. The same applies to economic activity, since any activity requires the consumption of energy. According to the Environmental Protection Agency, the burning of fossil fuels was responsible for 79 percent of U.S. greenhouse gas emissions in 2010. So whilst economic activity takes place fossil fuels will be burned and CO2 emissions are unavoidable - unless we use exclusively renewable energy resources, which is not likely to occur very soon. However, the increasing CO2 concentrations in the atmosphere will have negative consequences, such droughts, floods, crop failures, etc. These effects represent limits to economic growth. The CLD illustrates some of the more prominent negative feedback loops that act as a break on economic growth and wealth.  As the negative feedback loops (B1-B4) get stronger, an interesting question is, 'will a sharp reduction in economic wealth and unavoidable recession lead to wide-spread food riots and disturbances?'

Microeconomic measures can produce counterintuitive
'emergent' effects at the macro or systemic level. The commendable act of
saving money by individuals during uncertain economic times has the perverse macroeconomic
effect of making a recession  worse: in aggregate there will be less money availabl
Microeconomic measures can produce counterintuitive 'emergent' effects at the macro or systemic level. The commendable act of saving money by individuals during uncertain economic times has the perverse macroeconomic effect of making a recession  worse: in aggregate there will be less money available for spending, suppressing demand for goods and services. Economists call this effect 'the paradox of thrift'. Similarly, logical efforts by companies in such conditions to reduce their wage bill or their postponement of investment decisions will reduce spending in the economy  and deepen the economic downturn.

What can be done to counteract this harmful dynamic? The missing spending can be replaced by government spending: governments have it within their power to effectively counter economic downturns!

    INTRODUCTION   

 This is a balanced loop model that demonstrates how COVID
19 outbreak in Burnie and the response of the government (e.g. by enforcing health
policies: Lockdown; quarantine, non-necessary business closure; border closure)
affect the local economy.  This model has 13 positive loo

INTRODUCTION

This is a balanced loop model that demonstrates how COVID 19 outbreak in Burnie and the response of the government (e.g. by enforcing health policies: Lockdown; quarantine, non-necessary business closure; border closure) affect the local economy.  This model has 13 positive loops and seven negative loops.  Government response is dependent on the number of reported COVID-19 cases which in turn thought to be dependent on the testing rates less those who recovered from COVID 19 and dead. Economic activity is dependent on the economic growth rate, increased in online shopping, increased in unemployment, number of people who do not obey the rules, COVID 19 cases and health policies.

 ASSUMPTIONS

 · Both infection and economic growth is reduced by enforcing government policies

 · However, the negative effect of government policies is reduced by the number of people who do not obey government health policies

 · Govt policies are enforced when the reported COVID-19 case are 10 or greater.

 ·     Number of COVID cases reported is dependent on the testing rates less those who recovered and dead.

 ·   The higher number of COVID-19 cases have a negative effect on local economy. This phenomena is known as negative signalling. 

 ·   Government policies have a negative effect on economic activity because health policies limit both social and economic activities which directly or indirectly affect the economy in Burnie .  

 ·  This negative effect is somewhat reduced by the increase in online shopping and the number of people who do not obey heath rules.

 INTERESTING INSIGHTS

The test ratings seem to play a vital role in controlling COVID-19 outbreak. Higher Rates of COVID testings decrease the number of COVID 19 deaths and number of infected. This is because higher rates of testing accelerate the government involvement (as the government intervention is triggered earlier, 10 COVID cases mark is reached earlier). Delaying the government intervention by reducing the COVID testing rates increases the death rates and number of infected. 

Increased testing rates allow the figures (deaths, susceptible, infected) to reach a plateau quickly. 





The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale e
The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model is a first attempt to illustrate the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy use in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are dealt with via Li-ion battery storage. Note, however, that seasonal variation of PV is not addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
Model showing the effect of bank lending of deposited money as a multiplier in the creation of new money. Multiplier effect is shown as related to the bank reserve requirement on deposited funds.
 This model is an attempt to understand the interactions within an economy in an attempt to determine where the leverage points are to stimulate an economy.  @ LinkedIn ,  Twitter ,  YouTube

This model is an attempt to understand the interactions within an economy in an attempt to determine where the leverage points are to stimulate an economy.

@LinkedInTwitterYouTube

Afirmația că nu poate exista activitate economică fără energie și că combustibilii fosili sunt finiți contrastează cu faptul că banii nu sunt finiți și pot fi creați de guverne prin intermediul băncilor lor centrale la costuri marginale zero ori de câte ori este nevoie.
         Un fapt important de
Afirmația că nu poate exista activitate economică fără energie și că combustibilii fosili sunt finiți contrastează cu faptul că banii nu sunt finiți și pot fi creați de guverne prin intermediul băncilor lor centrale la costuri marginale zero ori de câte ori este nevoie.
Un fapt important despre cărbunele, gazul și petrolul (mai ales atunci când sunt produse prin fracking) este că raporturile lor energetice nete scad rapid. Cu alte cuvinte, energia necesară pentru a extrage o anumită cantitate de combustibili fosili este în continuă creștere. Raportul în scădere „EROI” (Returul Energiei asupra Energiei Investite) oferă încă un avertisment că nu ne mai putem baza pe combustibilii fosili pentru a ne alimenta economiile. În 1940 a fost nevoie de energia unui singur baril de petrol pentru a extrage 100. Astăzi, energia unui baril de petrol va da doar 15. Nu putem aștepta până când raportul scade la 1/1 înainte de a investi serios în surse alternative de energie, pentru că până atunci societatea industrială așa cum o cunoaștem în prezent va fi încetat să mai existe. Un EROI de 1:1 înseamnă că este nevoie de energia unui baril de petrol pentru a extrage un baril de petrol - producția de petrol s-ar opri pur și simplu!

The statement that there can be no economic activity
without  energy and that fossil fuels are
finite contrasts with the fact that money is not finite and can be created by governments
via their central banks at zero marginal cost whenever needed.

 An important fact about COAL, GAS and OIL (even
wh
The statement that there can be no economic activity without  energy and that fossil fuels are finite contrasts with the fact that money is not finite and can be created by governments via their central banks at zero marginal cost whenever needed.

An important fact about COAL, GAS and OIL (even when produced via fracking) is that their net energy ratios are falling rapidly. In other words the energy needed to extract a given quantity of fossil fuels is constantly increasing. This ratio (Energy Invested on Energy Returned - EIOER) provides yet another warning that we can no longer rely on fossil fuels to power our economies. We cannot wait until the ratio falls to 1/1 before we invest seriously in alternative sources of energy, because by then industrial society as we know it doday will have ceased to exist. 

PS: A link between growth in energy consumption and GDP growth is clearly illustrated on slide 13 of Gail Tverberg's presentaion entitled ''Ooop! The world economy depends on an energy-related bubble''. In fact, the slide shows that growth in energy consumption usually precedes GDP growth.

https://gailtheactuary.files.wordpress.com/2015/10/oops-debt-bubble-10_30_15.pdf

A model to gain understanding of the causes and effects of a population's interest in engineering.
A model to gain understanding of the causes and effects of a population's interest in engineering.
Simplified Causal loop diagram (from    CLD 1 Insight ) after quantitative simulation experiments from Fig 5.20 Dianati, K. (2022) London’s Housing Crisis – A System Dynamics Analysis of Long-term Developments: 40 Years into the Past and 40 Years into the Future  UCL PhD Thesis  and  Video presentat
Simplified Causal loop diagram (from CLD 1 Insight) after quantitative simulation experiments from Fig 5.20 Dianati, K. (2022) London’s Housing Crisis – A System Dynamics Analysis of Long-term Developments: 40 Years into the Past and 40 Years into the Future UCL PhD Thesis and Video presentation
  Simulates personal accounts over time.    Model based on: http://circularmoney.org
Simulates personal accounts over time.

Model based on:
http://circularmoney.org
  ABOUT THE MODEL   This is a dynamic model that shows the correlation between the
health-related policies implemented by the Government in response to COVID-19 outbreak
in Burnie, Tasmania, and the policies’ impact on the Economic activity of the
area.   

   ASSUMPTIONS  

 The increase in the num

ABOUT THE MODEL

This is a dynamic model that shows the correlation between the health-related policies implemented by the Government in response to COVID-19 outbreak in Burnie, Tasmania, and the policies’ impact on the Economic activity of the area.

 ASSUMPTIONS

The increase in the number of COVID-19 cases is directly proportional to the increase in the Government policies in the infected region. The Government policies negatively impact the economy of Burnie, Tasmania.

INTERESTING INSIGHTS

1. When the borders are closed by the government, the economy is severely affected by the decrease of revenue generated by the Civil aviation/Migration rate. As the number of COVID-19 cases increase, the number of people allowed to enter Australian borders will also decrease by the government. 

2. The Economic activity sharply increases and stays in uniformity. 

3. The death rate drastically decreased as we increased test rate by 90%.


 This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary  here  and  here . As of 2 September 2015, ongoing development has now shifted to  this version  of the model.   The significance of reduced energy return on energy invested (EROI) in the tr
This is the original model version (v1.0) with default "standard run" parameter set: see detailed commentary here and here. As of 2 September 2015, ongoing development has now shifted to this version of the model.

The significance of reduced energy return on energy invested (EROI) in the transition from fossil fuel to renewable primary energy sources is often disputed by both renewable energy proponents and mainstream economists.​ This model illustrates the impact of EROI in large-scale energy transition using a system dynamics approach. The variables of primary interest here are: 1) net energy available to "the rest of the economy" as renewable penetration increases [Total final energy services out to the economy]; and 2) the size of the energy sector as a proportion of overall economic activity, treating energy use as a very rough proxy for size [Energy services ratio].
This model aggregates energy supply in the form of fuels and electricity as a single variable, total final energy services, and treats the global economy as a single closed system.
The model includes all major incumbent energy sources, and assumes a transition to wind, PV, hydro and nuclear generated electricity, plus biomass electricity and fuels. Hydro, biomass and nuclear growth rates are built into the model from the outset, and wind and PV emplacement rates respond to the built-in retirement rates for fossil energy sources, by attempting to make up the difference between the historical maximum total energy services out to the global economy, and the current total energy services out. Intermittency of PV and wind are compensated via Li-ion battery storage. Note, however, that seasonal variation of PV is not fully addressed i.e. PV is modeled using annual and global average parameters. For this to have anything close to real world validity, this would require that all PV capacity is located in highly favourable locations in terms of annual average insolation, and that energy is distributed from these regions to points of end use. The necessary distribution infrastructure is not included in the model at this stage.
It is possible to explore the effect of seasonal variation with PV assumed to be distributed more widely by de-rating capacity factor and increasing the autonomy period for storage.

This version of the model takes values for emplaced capacities of conventional sources (i.e. all energy sources except wind and PV) as exogenous inputs, based on data generated from earlier endogenously-generated emplaced capacities (for which emplacement rates as a proportion of existing installed capacity were the primary exogenous input).
The systemic
problem is to understand what influence the gold price? Many articles say
that the gold price is manipulated and some analysts predict that the bubble
will burst. (1) 

 We think that
understanding how gold can be influenced by different factors is an interesting
research topic. The var
The systemic problem is to understand what influence the gold price?

Many articles say that the gold price is manipulated and some analysts predict that the bubble will burst. (1)

We think that understanding how gold can be influenced by different factors is an interesting research topic. The variation of the gold price is a real-world problem which evaluates through the interaction of a group of different elements.

It seems that the gold price is a very complex problem understanding. Of course everybody has his own thinking about the problem according to his own filter.

But this approach is most of the time not valuable because there is not a full view of all the variables and their link. In a context of a growing demand and a constant supply, be able to determine if gold price will continue to increase and if this asset will represent a safe investment for the new decade.

In September 2011, gold price surged a record, $1,274,75 an ounce. According to the Commodities guru George Soros “gold was the ultimate bubble" and was no longer a safe investment.

On the other hand, the research conducts by metal consultant GFMS predicted that gold will hit a new record of $1,300 an ounce. (2)

Who was right? Both of them. 

This example illustrates how complex is the problem.

At the time of this research the price of gold is $1,316,79 an ounce.

Wealthy persons are concerned by preserving their fortune, they also look to maximise their wealth and to keep it safe. Many options are available to investors, despite buillion is a popular asset on a long-term portfolio, nowadays is it gold a safe investment? That is a good question. Also understanding the impact of gold on the economy and how it is link to poverty might be interesting. To analyze an issue, one must first define it.

In order to get a better understanding of the gold price we will model this complex problem. Our goal is to visualize the interconnection of elements and be able to identify feedback loops with the aim to understand the complexity of the problem.

We will analyse different documents from various sources, underline variables and identify their relationships over time.

 

Haaglanden Social housing Fig 18 SD Model feedback structure from  Eskanasi 2014   thesis Other models in the thesis include middle income households and mortgage debt
Haaglanden Social housing Fig 18 SD Model feedback structure from Eskanasi 2014  thesis Other models in the thesis include middle income households and mortgage debt
  Overview  A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.     How the model works.   Trees grow, we cut them down because of demand for Timber amd sell the logs.  Wit
Overview
A model which simulates the competition between logging versus adventure tourism (mountain bike ridding) in Derby Tasmania.  Simulation borrowed from the Easter Island simulation.

How the model works.
Trees grow, we cut them down because of demand for Timber amd sell the logs.
With mountain bkie visits.  This depends on past experience and recommendations.  Past experience and recommendations depends on Scenery number of trees compared to visitor and Adventure number of trees and users.  Park capacity limits the number of users.  
Interesting insights
It seems that high logging does not deter mountain biking.  By reducing park capacity, visitor experience and numbers are improved.  A major problem is that any success with the mountain bike park leads to an explosion in visitor numbers.  Also a high price of timber is needed to balance popularity of the park. It seems also that only a narrow corridor is needed for mountain biking
Trying to look objectively how tax changes to the wealthiest could lower debt and any impact to the economy.
Trying to look objectively how tax changes to the wealthiest could lower debt and any impact to the economy.
  Simulates personal accounts over time.    Model based on: http://circularmoney.org
Simulates personal accounts over time.

Model based on:
http://circularmoney.org