Modélisation spatiale et multi-agents d'une épidémie. Avec trois classes d'individus: susceptibles (sains), infectés (malades et contagieux), et remis (sains et temporairement immunisés).  Traduit de    https://insightmaker.com/insight/2846/Agent-Based-Disease-Simulation   

Modélisation spatiale et multi-agents d'une épidémie. Avec trois classes d'individus: susceptibles (sains), infectés (malades et contagieux), et remis (sains et temporairement immunisés).

Traduit de 

https://insightmaker.com/insight/2846/Agent-Based-Disease-Simulation  


Demo of population growth with distinct agents.
Demo of population growth with distinct agents.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple Susceptible - Infected - Recovered disease as a stock and flow model.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
A simple Susceptible - Infected - Recovered disease as a stock and flow model.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

5 months ago
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
From Schluter et al 2017  article  A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017  video .   See also Balke and Gilbert 2014 JASSS  article  How do agents make decisions? (recommended by Kurt Kreuger U of S)
From Schluter et al 2017 article A framework for mapping and comparing behavioural theories in models of social-ecological systems COMSeS2017 video. See also Balke and Gilbert 2014 JASSS article How do agents make decisions? (recommended by Kurt Kreuger U of S)
A simple ABM to model voters switching party allegiances in US elections using a Markov chain.
A simple ABM to model voters switching party allegiances in US elections using a Markov chain.
Demo of population growth with distinct agents.    If you find these contributions meaningful your  sponsorship  would be greatly appreciated.
Demo of population growth with distinct agents.

If you find these contributions meaningful your sponsorship would be greatly appreciated.
 A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).  @ LinkedIn ,  Twitter ,  YouTube

A spatially aware, agent based model of disease spread. There are three classes of people: susceptible (healthy), infected (sick and infectious), and recovered (healthy and temporarily immune).

@LinkedInTwitterYouTube

 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
The story board runs through the premise of the project with the approach I took
The story board runs through the premise of the project with the approach I took
 A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

A simple agent based foraging model. Consumer agents will move between fertile patches consuming them.

 Een 'agent based model' voor de capaciteit voor het fixen van software bug. Het bevat drie klassen van bugs: Foutrisico, Fout en Opgelost.

Een 'agent based model' voor de capaciteit voor het fixen van software bug. Het bevat drie klassen van bugs: Foutrisico, Fout en Opgelost.