Insight diagram
Clone of Group 5 Watershed Project Insight Maker
Insight diagram
STEM is a modified implementation of Hartig et al.'s (2019) Very Simple Ecosystem Model (VSEM). The vegetation part of the model has two stocks of biomass carbon (C): aboveground C and belowground C.  The soil part of the model has a single stock of soil organic C. Carbon flows into the biomass C stocks via net primary productivity (NPP). Carbon flows out of these stocks and into the soil organic C stock via the loss of aboveground/belowground C through senescence (i.e., abscission of dead leaves and roots). SOC loss is due to heterotrophic respiration of the soil organic matter.

Reference:
Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Simple Terrestrial Ecosystem Model (STEM)
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
Insight diagram
LOWER SKUNK CREEK

Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
TaylorThisisYours
Insight diagram
Stock & Flow Clear Lake - Water System Only
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
Insight diagram
Conflict simulation in TE river system
Tigris Euphrates
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
10 months ago
Insight diagram
Attempt to model the Biotic pump.

Are you working on climate and / or the Biotic Pump and want to join efforts, please contact me (marcel.planb@gmail.com)

Marcel de Berg 
Our-Green-Spine
www.our-green-spine.org
Biotic Pump model 1
Insight diagram
Clone of Group 5 Watershed Project Insight Maker
Insight diagram
This is step 5 in making a climate model based on our insights of how trees actively contribute to the cooling capcacity of the Earth.​

In this step we added the reflection of sun energy by Clouds 

Present the temperature of the Earth is 288 Kelvin. Without Earth would be 255 Kelvin. So the energy balance of the Earth add 33 Kelvin.

We optimize the variable GHG-effect and the optimal number is 0.29625 in this model.


With Our-Green-Spine we have discovered new insights how trees / forest / green structures are part of the managing system of controlling the temperature of our Earth via their cooling capacity by using water and influencing the water cycle. We want to translate our insights in a climate model. People who to join us please send an email to marcel.planb@gmail.com.
Thanks, Marcel de Berg
Model 5 adding Reflection by clouds optimal GHG effect
Insight diagram
Clone of Group 5 Watershed Project Insight Maker
Insight diagram
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of Simple Terrestrial Ecosystem Model - Soil Moisture (STEM-SM)
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Clone of Primitives for Rainwater Harvesting -Tucson ENVS 270 F21
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
8 months ago
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Phoenix only.
Clone of Clone of Primitives for Rainwater Harvesting -Phoenix ENVS 270 F21
Insight diagram
Primitives for Watershed modeling project. Click Clone Insight at the top right to make a copy that you can edit.

The converter in this file contains precipitation for Tucson only. Tucson watersheds are Arroyo Chico, Canada Agua, and Lower Canada del Oro.
Clone of Primitives for Rainwater Harvesting -Tucson ENVS 270 F21
Insight diagram
form follows function