Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Clone of Clone of Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
Small replicator equation setup (2d) with prisoner's dilemma payoff matrix (can be adjusted): (dx/dt)_i = x_i*((A*x)_i-x^T*A*x)
Clone of Prisoner's dilemma with replicator equation
5 months ago
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Guam Invasive Snake population dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Clone of Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of CURSO MAR 25 - Grama, Cervo e Lobo - Presa Predador - modelo da internet
10 months ago
Insight diagram

Ce modèle simule la production de biomasse par une cohorte d’organismes benthiques, inspiré d’un cas réel : le gastéropode marin Nassarius reticulatus, fréquent sur les estrans vaseux d’Europe.
Ce modèle s’inscrit dans une logique fonctionnelle, et complète les approches démographiques classiques (exponentielle, logistique, Leslie), en intégrant une autre dimension essentielle de l’écologie : la production secondaire.

Contrairement aux modèles précédents centrés uniquement sur le nombre d’individus (N), ce modèle prend en compte la croissance individuelle en poids (W), et son interaction avec la survie de la cohorte pour estimer la production de biomasse totale.
Chaque individu n’est pas seulement un effectif, mais aussi une quantité de matière, une composante mesurable du flux d’énergie dans l’écosystème.

Les Composants du Modèle :

Variables d’état (Stocks) :

  • N : Nombre d’individus vivants dans la cohorte.
  • : Poids moyen des individus (grammes).
  • Instant Biomass : Biomasse vivante instantanée de la cohorte, calculée comme N × W
  • Secondary Production : Production cumulée de biomasse (incluant celle produite par les survivants et par les morts).

Flux :

  • Gross Gain : Quantité de biomasse produite par la croissance individuelle à chaque pas de temps (N × variation de W).
  • Gross Loss : Biomasse perdue via la mort des individus, c’est-à-dire le poids moyen multiplié par les décès.
  • Production (flux) : Biomasse totale produite, incluant celle des survivants et des morts (Gross gain).
  • Net Variation : Variation nette de la biomasse vivante (Gross gain − Gross loss), soit l'accumulation réelle dans la population.

Paramètres modifiables :

  • Initial N : Nombre initiale de la cohorte (individus).
  • Initial W : Poids moyen initial (grammes).
  • d : Taux de mortalité (proportion d’individus mourant à chaque pas de temps).
  • g : Taux de croissance pondérale des individus.
  • Wmax : Poids maximal asymptotique moyen (croissance indéterminée).

Remarque :
La relation entre taille et masse corporelle est supposée intégrée dans l'équation de croissance. La courbe de poids moyen (W) représente donc déjà l'évolution allométrique sans avoir à la modéliser séparément.

Indicateurs produits :

  • Production secondaire nette cumulée : quantité totale de biomasse produite au cours de la vie de la cohorte.
  • Biomasse instantanée : stock de matière vivante à un instant donné.
  • Moment du pic de production : période durant laquelle la cohorte contribue le plus aux flux trophiques.

Votre Mission d'Exploration :

Votre objectif est de vous mettre dans la peau d’un écologue benthique étudiant le fonctionnement d’un écosystème vaseux.

  1. Simulez la dynamique par défaut pour comprendre l’interaction entre croissance individuelle et mortalité dans la production.
  2. Faites varier le taux de mortalité : à quel moment le coût des pertes excède-t-il la production ?
  3. Augmentez ou diminuez la vitesse de croissance : en quoi cela modifie-t-il la quantité totale de biomasse produite ?
  4. Identifiez le moment de production maximale et reliez-le à l’intérêt écologique de la cohorte pour les niveaux trophiques supérieurs.
  5. Comparez différents scénarios (forte mortalité / croissance lente vs. faible mortalité / croissance rapide) pour identifier les conditions d’une production optimale.

Cliquez sur "SIMULATE" et explorez la dynamique de votre cohorte benthique !
Ce modèle vous permet de relier la biologie individuelle à la structure des flux dans les écosystèmes, une étape clé en écologie fonctionnelle.

 

Courbe d'Allen : Croissance individuelle et production d'une cohorte
3 months ago
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Cervo e Lobo - Presa Predador - modelo da internet
10 months ago
Insight diagram
Cancer de prostata
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
9 months ago
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Jun 2025 - Plantas, Cervo e Lobo - modelo da internet
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Plant, Deer and Wolf Population Dynamics
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of Jun 2025 - Cervo e Lobo - Presa Predador - modelo da internet
7 months ago
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Clone of CURSO MAR 25 - Grama, Cervo e Lobo - Presa Predador - modelo da internet
7 months ago
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
My First Insight