This model blends insights from several research based sources to capture research reported elements and dynamics relating to radicalization and, conversely: legitimization & state stability.
This model blends insights from several research based sources to capture research reported elements and dynamics relating to radicalization and, conversely: legitimization & state stability.
           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
 An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at  http://bit.ly/HlxtZj   and LA Alfeld and AK Graham's Introduction to

An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at http://bit.ly/HlxtZj  and LA Alfeld and AK Graham's Introduction to Urban Dynamics 1974 p 195.

An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at http://www.systemswiki.org/

WIP Summary of Levin Roberts and Hirsch 1975 book subtitled A Computer-Aided Search for Heroin Policy using System Dynamics
WIP Summary of Levin Roberts and Hirsch 1975 book subtitled A Computer-Aided Search for Heroin Policy using System Dynamics
WIP based on Emery Roe's 2013  book . See also Dynamics in Action  IM-3239  for more on behavior and The Art of the State  IM-11962  for more on Grid-Group Cultural Theory
WIP based on Emery Roe's 2013 book. See also Dynamics in Action IM-3239 for more on behavior and The Art of the State IM-11962 for more on Grid-Group Cultural Theory
Extended from  Im-628  Supply and demand by adding control folder. See also Managing Health Services Use  IM-17566   Based on JHPPL 2015  article  Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
Extended from Im-628 Supply and demand by adding control folder.
See also Managing Health Services Use IM-17566
Based on JHPPL 2015 article Note here the framing is an economic exchange rather than a public service (needs-services-resources) or capabilities
           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
 This common archetype of systems that include relapse or recidivism allows exploration of the unintended effects of increasing upstream capacity and swamping downstream capacity. The increase in the relapse rate eventually returns to swamp upstream capacity as well. A social welfare example, based

This common archetype of systems that include relapse or recidivism allows exploration of the unintended effects of increasing upstream capacity and swamping downstream capacity. The increase in the relapse rate eventually returns to swamp upstream capacity as well. A social welfare example, based on a TANF case study, from How Small System Dynamics Models Can Help the Policy Process. N. Ghaffarzadegan, J. Lyneis, GP Richardson. System Dynamics Review 27,1 (2011) 22-44 abstract Conference version at http://bit.ly/HlxtZj

           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
 An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at  http://bit.ly/HlxtZ j  and LA Alfeld and AK Graham's Introduction to

An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at http://bit.ly/HlxtZj  and LA Alfeld and AK Graham's Introduction to Urban Dynamics 1974 p 195.

           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
           This version 8B of the   CAPABILITY DEMONSTRATION   model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified forma
This version 8B of the CAPABILITY DEMONSTRATION model. A net Benefit ROI has been added. The Compare results feature allows comparison of alternative intervention portfolios.  Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes and durations of impact remain in need of further data & adjustment (calibration). In the interests of maintaining steady progress and respecting budget & time constraints, significant simplifying assumptions have been made: assumptions that mitigate both completeness & accuracy of the outputs.  This model meets the criteria for a Capability demonstration model, but should not be taken as complete or realistic in terms of specific magnitudes of effect or sufficient build out of causal dynamics.  Rather, the model demonstrates the interplay of a minimum set of causal forces on a net student progress construct -- as informed and extrapolated from the non-causal research literature.
Provided further interest and funding, this  basic capability model may further developed and built out to: higher provenance levels -- coupled with increased factorization, rigorous causal inclusion and improved parameterization.
           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
 John Kingdon's Theory of Streams in the politics of the policy process. From the  book  Kingdon, John (1999)  Agendas Alternatives and Public Policies . Longman New York. Click on +View Story at the bottom left.

John Kingdon's Theory of Streams in the politics of the policy process. From the book Kingdon, John (1999) Agendas Alternatives and Public Policies. Longman New York. Click on +View Story at the bottom left.

           Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education pe
Despite a mature field of inquiry, frustrated educational policy makers face a crisis characterized by little to no clear research-based guidance and significant budget limitations --  in the face of too often marginal or unexpectedly deleterious achievement impacts. As such, education performance has been acknowledged as a complex system and a general call in the literature for causal models has been sounded. This modeling effort represents a strident first step in the development of an evidence-based causal hypothesis: an hypothesis that captures the widely acknowledged complex interactions and multitude of cited influencing factors. This non-piecemeal, causal, reflection of extant knowledge engages a neuro-cognitive definition of students.  Through capture of complex dynamics, it enables comparison of different mixes of interventions to estimate net academic achievement impact for the lifetime of a single cohort of students. Results nominally capture counter-intuitive unintended consequences: consequences that too often render policy interventions effete. Results are indexed on Hattie Effect Sizes, but rely on research identified causal mechanisms for effect propagation. Note that the net causal interactions have been effectively captured in a very scoped and/or simplified format.  Relative magnitudes of impact have been  roughly adjusted to Hattie Ranking Standards (calibration): a non-causal evidence source. This is a demonstration model and seeks to exemplify content that would be engaged in a full or sufficient model development effort.  Budget & time constraints required significant simplifying assumptions. These assumptions mitigate both the completeness & accuracy of the outputs. Features serve to symbolize & illustrate the value and benefits of causal modeling as a performance tool.
 An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at  http://bit.ly/HlxtZ j  and LA Alfeld and AK Graham's Introduction to

An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at http://bit.ly/HlxtZj  and LA Alfeld and AK Graham's Introduction to Urban Dynamics 1974 p 195.

 An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at  http://bit.ly/HlxtZ j  and LA Alfeld and AK Graham's Introduction to

An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at http://bit.ly/HlxtZj  and LA Alfeld and AK Graham's Introduction to Urban Dynamics 1974 p 195.

 Prey    dx / dt  =  αx  -  βxy   The prey reproduces exponentially ( αx ) unless subject to predation. The rate of predation is the chance  (  βxy)  with which the predators meet and kill the prey.   Predator    dy/dt =    δxy  -   γy   The predator population growth    δxy    depends on successful
Prey
dx/dtαx - βxy
The prey reproduces exponentially (αx) unless subject to predation. The rate of predation is the chance (βxy) with which the predators meet and kill the prey.

Predator

dy/dt = δxy - γy

The predator population growth δxy depends on successful kills and the reproduction rate; however, delta is likely be different from beta. The loss rate, an exponential decay, of the predators {\displaystyle \displaystyle \gamma y}γy represents either natural death or emigration

3 11 months ago
 An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at  http://bit.ly/HlxtZj   and LA Alfeld and AK Graham's Introduction to

An adaptation of the URBAN1 Model from Navid Ghaffarzadegan, John Lyneis and George P Richardson's How small system dynamics models can help the public policy process. System Dynamics Review 27: 22-44 (2011) Conference version at http://bit.ly/HlxtZj  and LA Alfeld and AK Graham's Introduction to Urban Dynamics 1974 p 195.

An element of Perspectives: The Foundation of Understanding and Insights for Effective Action. Register at http://www.systemswiki.org/