Insight diagram

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

Clone of Bio 190: BIDE Model With Carrying Capacity
Insight diagram
​S-Curve + Delay for Bell Curve Showing Erlang Distribution

Generation of Bell Curve from Initial Market through Delay in Pickup of Customers

This provides the beginning of an Erlang distribution model

The Erlang distribution is a two parameter family of continuous probability distributions with support . The two parameters are:

  • a positive integer 'shape' 
  • a positive real 'rate' ; sometimes the scale , the inverse of the rate is used.

S-Curve + Delay for Bell Curve by Guy Lakeman
Insight diagram
Challenges in sustainability are multilevel.
This diagram attempts to summarize levels of self reinforcing destructive dynamics, authors that deal with them, and point of leverage for change.

The base of the crisis is a mechanistic rather than ecological worldview. This mechanistic worldview is based on outdated science that assumed the universe to be a large machine. In a machine there is an inside and an outside. The health of the inside is important for the machine, the outside not. In an ecological view everything is interconnected, there is no clear separation in the future of self and other. All parts influence the health of other parts. To retain health sensitivity and democracy are inherent. The sense of separation from other that keeps the mechanistic worldview dominant is duality. Being cut off from spiritual traditions due to a mechanistic view of science people need access to inter-spirituality to reconnect with the human traditions and tools around connectedness, inner discovery, and compassion. Many books on modern physics and biology deal with the system view implications. "The coming interspiritual age" deals with the need to connect spiritual traditions and science.

At the bottom for the dynamic is an individual a sense of disconnectedness leads to a dependency on spending and having rather than connecting. The connecting has become too painful and dealing with it unpopular in our culture. Joanna Macy deals with this in Active Hope. 

This affluenza and disconnection is worsened by a market that floods one with advertisements aimed at creating needs and a sense of dissatisfaction with that one has.

National economies are structured around maximising GDP which means maximising consumption and financial capital movement. This is at the cost of local economies. These same local economies are needed for balanced happiness as well as for sustainability.

Generally institutions focus on maximising consumption rather than sustaining life support systems. David Korten covers this well.

Power and wealth is confused in this worldview. In striving for wealth only power is striven for in the form of money and monopoly.

Those at the head of large banks and corporations tend to be there because they exemplify this approach. They have few scruples about enforcing this approach onto everyone through wars and disaster capitalism. Naomi Klein and David Estulin documented this.

Power has become so centralized that we need this understanding to be widespread and include many of those in power. Progress of all of these levels are needed to show them and all that another way is possible.
Levels of transition needed to sustainability
Insight diagram

This model has two main components. First is modelling the change in population composition as non-First Nations immigration increases with the opening of new mines in the region. The second is modelling the increasing income disparity between First Nations and non-First Nations as mining jobs are disproportionately gained by non-First Nations workers.

Northern Ontario Demographic and Income Trend Model
Insight diagram

Dynamic simulation modelers are particularly interested in understanding and being able to distinguish between the behavior of stocks and flows that result from internal interactions and those that result from external forces acting on a system.  For some time modelers have been particularly interested in internal interactions that result in stable oscillations in the absence of any external forces acting on a system.  The model in this last scenario was independently developed by Alfred Lotka (1924) and Vito Volterra (1926).  Lotka was interested in understanding internal dynamics that might explain oscillations in moth and butterfly populations and the parasitoids that attack them.  Volterra was interested in explaining an increase in coastal populations of predatory fish and a decrease in their prey that was observed during World War I when human fishing pressures on the predator species declined.  Both discovered that a relatively simple model is capable of producing the cyclical behaviors they observed.  Since that time, several researchers have been able to reproduce the modeling dynamics in simple experimental systems consisting of only predators and prey.  It is now generally recognized that the model world that Lotka and Volterra produced is too simple to explain the complexity of most and predator-prey dynamics in nature.  And yet, the model significantly advanced our understanding of the critical role of feedback in predator-prey interactions and in feeding relationships that result in community dynamics.The Lotka–Volterra model makes a number of assumptions about the environment and evolution of the predator and prey populations:

1. The prey population finds ample food at all times.
2. The food supply of the predator population depends entirely on the size of the prey population.
3. The rate of change of population is proportional to its size.
4. During the process, the environment does not change in favour of one species and genetic adaptation is inconsequential.
5. Predators have limitless appetite.
As differential equations are used, the solution is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.[23]

Prey
When multiplied out, the prey equation becomes
dx/dtαx - βxy
 The prey are assumed to have an unlimited food supply, and to reproduce exponentially unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet; this is represented above by βxy. If either x or y is zero then there can be no predation.

With these two terms the equation above can be interpreted as: the change in the prey's numbers is given by its own growth minus the rate at which it is preyed upon.

Predators

The predator equation becomes

dy/dt =  - 

In this equation, {\displaystyle \displaystyle \delta xy} represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). {\displaystyle \displaystyle \gamma y} represents the loss rate of the predators due to either natural death or emigration; it leads to an exponential decay in the absence of prey.

Hence the equation expresses the change in the predator population as growth fueled by the food supply, minus natural death.


Bio103 Predator-Prey Model ("Lotka'Volterra")
Insight diagram

Rūta Grasberga

Cēsu iedzīvotāju skaita izmaiņas
Insight diagram
Basic wolf population dynamics
Wolf population model
Insight diagram
wolf ~ logistic growth
Insight diagram

Overview

It is a model simulating logging and adventure tourism (mountain bike riding) competition in Derby, Tasmania. It is a chance for northeast Tasmania to become an exciting, new, world-class product for the mountain bike tourism industry, which drives local economic development.

Simulation borrowed from the Easter Island simulation.

How the model works

l  Trees grow; we cut them down because of demand for Timber and sell the logs.

l  The mountain bike visits depend on previous experience and suggestions.

l  Previous experience and suggestions depend on the number of trees compared to visitors and adventure number of trees and users. Park capacity limits the number of mountain bike trail users.

l  The employment opportunity depends on the mountain bike demand and demand for Timber.

Interesting Insights

Mountain biking appears to be unaffected by heavy logging. The visitor experience and numbers are improved by reducing park capacity. The main issue is that any success with the mountain bike park increases visitor numbers. A high timber price is also required to balance the park's popularity. Mountain biking appears to require only a narrow corridor; that is, single-track mountain bike trails are enough. The employment is a measure of the economic acting, a recession or growth trends.

BMA708 Marketing Insights into Big Data_Complex Systems_Mountain bike riding versus logging in Derby, Tasmania
Insight diagram
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem. Changes to original: removal of non-connected variables to simplify view for middle school students. 
YellowstoneEcoClassModel - ISD OWL
Insight diagram
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
Forcing functions (tides and light)
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Out 2025 - 3. Cervo e Lobo - Presa Predador - modelo da internet
14 3 months ago
Insight diagram

A simulation illustrating simple predator prey dynamics. You have two populations.

Clone of Predator Prey
Insight diagram
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Clone of Transformative Agency in Social-Ecological System
Insight diagram
​Climate Sector Boundary Diagram By Guy Lakeman
 Climate, Weather, Ecology, Economics, Population, Welfare, Energy, Policy, CO2, Carbon Cycle, GHG (green house gasses, combined effects)

As general population is composed of 85% with an education level of a 12 grader or less (a 17 year old), a simple block of components concerning the health of the planet needs to be broken down into simple blocks.
Perhaps this picture will show the basics on which to vote for a sustained healthy future
Democracy is only as good as the ability of the voters to FULLY understand the implications of the policies on which they vote., both context and the various perspectives.   National voting of unqualified voters on specific policy issues is the sign of corrupt manipulation.

Clone of Climate Sector Boundary Diagram of Guy Lakeman
Insight diagram

This is a basic model for use with our lab section.  The full BIDE options.

Clone of Bio 101: Basic Population Model
Insight diagram

This is a basic BIDE (birth, immigration, death, emigration) model.  Not all parts are implemented, however Birth and Death are.

Clone of Bio 190: BIDE Model With Carrying Capacity
Insight diagram
Modeling forest succession in a northeast deciduous forest.
Lab1 Forestry Succession Model
Insight diagram
B
Predator-Prey Interactions (Wolves & Moose) QB
Insight diagram
Clone of Clone of BirthRateDeathRateAndR
Insight diagram
Westley, F. R., O. Tjornbo, L. Schultz, P. Olsson, C. Folke, B. Crona and Ö. Bodin. 2013. A theory of transformative agency in linked social-ecological systems. Ecology and Society 18(3): 27. link

Clone of Transformative Agency in Social-Ecological System
Insight diagram

This is a basic model for use with our lab section.  The full BIDE options.

Clone of Bio 101: Basic Population Model
Insight diagram
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
Out 2025 - 4. Plantas, Cervo e Lobo - modelo da internet
10 3 months ago