This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Clone of Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Clone of Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Pharmacokinetics
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Clone of Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Dosage per day, Doses per day, Every ? hours, Medicine in Intestines, Drug absorption, Plasma level, Blood volume, Plasma concentration, Toxic level, Medicinal level, Drug excretion, Excretion rate, Half-Life
Clone of Pharmacokinetics
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
Ce modèle est une simulation classique du cycle de productivité dans l'océan, incluant les effets de la thermocline pour désactiver l'advection d'éléments nutritifs dissous et de détritus à la couche superficielle.
Ce modèle illustre un certain nombre de caractéristiques intéressantes notamment le lien de trois variables d'état dans un cycle fermé, l'utilisation du temps pour contrôler la durée de l'advection et la fonction modulus pour les données de température qui cyclent annuellement sur plusieurs années.
Les variables d'état du modèle sont exprimées en unités d'azote (mg N m-3), et l'étalonnage est basé sur:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
Traduction du modèle de Joao G Ferreira (https://insightmaker.com/insight/6838/NPD-model-Nutrients-Phytoplankton-Detritus)
Le modèle NPD (nutriments, phytoplancton, détritus) basé sur la productivité primaire de la Mer du Nord
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)
This model is a classic simulation of the production cycle in the ocean, including the effects of the thermocline in switching off advection of dissolved nutrients and detritus to the surface layer.
It illustrates a number of interesting features including the coupling of three state variables in a closed cycle, the use of time to control the duration of advection, and the modulus function for cycling annual temperature data over multiple years.
The model state variables are expressed in nitrogen units (mg N m-3), and the calibration is based on:
Baliño, B.M. 1996. Eutrophication of the North Sea, 1980-1990: An evaluation of anthropogenic nutrient inputs using a 2D phytoplankton production model. Dr. scient. thesis, University of Bergen.
Fransz, H.G. & Verhagen, J.H.G. 1985. Modelling Research on the Production Cycle of Phytoplankton in the Southern Bight of the Northn Sea in Relation to Riverborne Nutrient Loads. Netherlands Journal of Sea Research 19 (3/4): 241-250.
This model was first implemented in PowerSim some years ago by one of my M.Sc. students, who then went on to become a Buddhist monk. Although this is a very Zen model, as far as I'm aware, the two facts are unrelated.
Clone of NPD model (Nutrients, Phytoplankton, Detritus)