Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Physician agents interacting with delegate agents for emergency department assessment diagnosis and treatment. From BMC  paper  May 2013, combining figs 1 and 2
Physician agents interacting with delegate agents for emergency department assessment diagnosis and treatment. From BMC paper May 2013, combining figs 1 and 2
Completion of  IM-15119  (which added patches to  IM-14058 ). Unconscious affective dynamics Josh Epstein's Agent Zero Book  webpage   Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents
Completion of IM-15119 (which added patches to IM-14058). Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage  Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents

 Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

 From  IM-3533  Grimm's ODD and Nate Osgood's ABM Modeling Process and  Courses  based on Volker Grimm and Steven F. Railsback's 2012  paper  and Muller et al 2013  paper  Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Softw

From IM-3533 Grimm's ODD and Nate Osgood's ABM Modeling Process and Courses based on Volker Grimm and Steven F. Railsback's 2012 paper and Muller et al 2013 paper Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Software, 48: 37-48.

 This model is a classic instance of an Erlang Queuing Process.     We have the entities:  - A population of cars which start off in a "crusing" state;  - At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simu
This model is a classic instance of an Erlang Queuing Process.

We have the entities:
- A population of cars which start off in a "crusing" state;
- At each cycle, according to a Poisson distribution defined by "Arrival Rate" (which can be a constant, a function of time, or a Converter to simulate peak hours), some cars transition to a "looking" for an empty space state.
- If a empty space is available (Parking Capacity  > Count(FindState([cars population],[parked]))) then the State transitions to "Parked."
-The Cars stay "parked" according to a Normal distribution with Mean = Duration and SD = Duration / 4
- If the Car is in the state "Looking" for a period longer than "Willingness to Wait" then the state timeouts and transitions to impatient and immediately transitions to "Crusing" again.

The model is set to run for 24 hours and all times are given in hours (or fraction thereof)

WIP:
- Calculate the average waiting time;
- Calculate the servicing level, i.e., 1- (# of cars impatient)/(#cars looking)

A big THANK YOU to Scott Fortmann-Roe for helping setup the model's framework.
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
Completion of  IM-15119  (which added patches to  IM-14058 ). Unconscious affective dynamics Josh Epstein's Agent Zero Book  webpage   Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents
Completion of IM-15119 (which added patches to IM-14058). Unconscious affective dynamics Josh Epstein's Agent Zero Book webpage  Part II p.89 with 2 agent types, spatial patches and location aware, mobile occupying (blue) agents

Demo of population growth with distinct agents.    Follow us on  YouTube ,  Twitter ,  LinkedIn  and please support  Systems Thinking World .
Demo of population growth with distinct agents.

Follow us on YouTube, Twitter, LinkedIn and please support Systems Thinking World.
 Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

Modelo Baseado em Agente para a dispersão espacial de doenças, considerando o modelo SIR com perda da imunidade ao vírus, conforme [Bellinger G.]

 From  IM-3533  Grimm's ODD and Nate Osgood's ABM Modeling Process and  Courses  based on Volker Grimm and Steven F. Railsback's 2012  paper  and Muller et al 2013  paper  Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Softw

From IM-3533 Grimm's ODD and Nate Osgood's ABM Modeling Process and Courses based on Volker Grimm and Steven F. Railsback's 2012 paper and Muller et al 2013 paper Describing Human Decisions in Agent-based Models – ODD + D, An Extension of the ODD Protocol', Environmental Modelling and Software, 48: 37-48.

3 3 months ago
I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state
I used the "disease dynamics" tutorial to help me construct this ABM, in which the individual agents are students and the states in which they can find themselves (with regard to learning a new skill/concept) include "confusion," "familiarity," and "mastery." I modeled the transitions from one state to the next under the assumption that a student cannot transition from "mastery" of a particular concept back to "confusion." This model also operates under the assumption that the more students who become familiar with a skill, the more likely it is that other students will, too (presumably, students help each other). 

The skill I imagined being taught to these students is something like Argumentative Writing, as most students can become "familiar" with this skill (or perform "satisfactorily" in it), while only some students are likely to "master" this skill in a given school year. 

I labeled the transitions "exposure" and "practice" to signify that exposing students to a new skill/concept tends to lead to their becoming familiar with it, while students taking on the task of practicing is the only way for them to transition to mastery. 

I complicated this model by adding a teacher to the mix. I also changed the number of states that students can exhibit in order to make it such that there is a 50/50 chance that once a student has learned a skill, he/she will enter a state of confusion as opposed to familiarity with the new skill/concept. The states that teachers can enter include "helpful" and "overwhelmed." The "overwhelmed" state depends on the number of students who are in a state of confusion (asking too many questions). As students transition to the states of familiarity or mastery, the teacher becomes less overwhelmed and moves back into the state of simply being "helpful."  
A simple Markov chain modeling the transfer of power between two parties in the US Senate. Developed using data from FiveThirtyEight.com for the years 1978-2018.    Transition matrix:            R   D  R    .7   .3  D    .4   .6
A simple Markov chain modeling the transfer of power between two parties in the US Senate. Developed using data from FiveThirtyEight.com for the years 1978-2018.

Transition matrix:

       R   D
R    .7   .3
D    .4   .6


Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version  IM-574
Model combining system dynamics and agent based modeling. Based on Prochaska's Transtheoretical Model of Behaviour Change. See also preceding SD Version IM-574
 An implementation of the classic Game of Life using agent based modeling. Rules:   A live cell with less than two alive neighbors dies.  A live cell with more than three alive neighbors dies.  A dead cell with three neighbors becomes alive.   This insight is an element of the  Agent Based Modeling

An implementation of the classic Game of Life using agent based modeling.

Rules:
  • A live cell with less than two alive neighbors dies.
  • A live cell with more than three alive neighbors dies.
  • A dead cell with three neighbors becomes alive.
This insight is an element of the Agent Based Modeling learning module in Systems KeLE.
Demo of population growth with distinct agents.    This insight is an element of the  Agent Based Modeling  learning module in  Systems KeLE .
Demo of population growth with distinct agents.

This insight is an element of the Agent Based Modeling learning module in Systems KeLE.