Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
During the 'big recession' many governments have
deliberately repressed salaries, usually via structural reforms, in order to
gain competitivity. However, repression of salaries increases inequality,
social discontent and often has counterintuitive effects. Salaries are a cost
for companies, but the
During the 'big recession' many governments have deliberately repressed salaries, usually via structural reforms, in order to gain competitivity. However, repression of salaries increases inequality, social discontent and often has counterintuitive effects. Salaries are a cost for companies, but they are also the basis for the demand for the goods and services they offer: people with little income cannot afford them. Scientific studies have shown repeatedly that economic growth generated via salary increases does not endanger the creation of employment, but rather reinforces it. In most countries, the 'positive effect of salary increases' eclipses any possible negative effects on export competitivity and even any detrimental effect on investment. A good example of such a study is the work of ONARAN and OBST on Wage-led Growth in the EU15 Member States (2016).  This positive dynamic has been highlighted in the model by prominent arrows. The policy implications for governments are clear! 

Simulation of MTBF with controls   F(t) = 1 - e ^ -λt   Where    • F(t) is the probability of failure    • λ is the failure rate in 1/time unit (1/h, for example)   • t is the observed service life (h, for example)  The inverse curve is the trust time On the right the increase in failures brings its
Simulation of MTBF with controls

F(t) = 1 - e ^ -λt 
Where  
• F(t) is the probability of failure  
• λ is the failure rate in 1/time unit (1/h, for example) 
• t is the observed service life (h, for example)

The inverse curve is the trust time
On the right the increase in failures brings its inverse which is loss of trust and move into suspicion and lack of confidence.
This can be seen in strategic social applications with those who put economy before providing the priorities of the basic living infrastructures for all.

This applies to policies and strategic decisions as well as physical equipment.
A) Equipment wears out through friction and preventive maintenance can increase the useful lifetime, 
B) Policies/working practices/guidelines have to be updated to reflect changes in the external environment and eventually be replaced when for instance a population rises too large (constitutional changes are required to keep pace with evolution, e.g. the concepts of the ancient Greeks, 3000 years ago, who based their thoughts on a small population cannot be applied in 2013 except where populations can be contained into productive working communities with balanced profit and loss centers to ensure sustainability)

Early Life
If we follow the slope from the leftmost start to where it begins to flatten out this can be considered the first period. The first period is characterized by a decreasing failure rate. It is what occurs during the “early life” of a population of units. The weaker units fail leaving a population that is more rigorous.

Useful Life
The next period is the flat bottom portion of the graph. It is called the “useful life” period. Failures occur more in a random sequence during this time. It is difficult to predict which failure mode will occur, but the rate of failures is predictable. Notice the constant slope.  

Wearout
The third period begins at the point where the slope begins to increase and extends to the rightmost end of the graph. This is what happens when units become old and begin to fail at an increasing rate. It is called the “wearout” period. 
 The L ogistic Map  is a polynomial mapping (equivalently,  recurrence relation ) of  degree 2 , often cited as an archetypal example of how complex,  chaotic  behaviour can arise from very simple  non-linear  dynamical equations. The map was popularized in a seminal 1976 paper by the biologist  Rob

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation. To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)  In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the l
This model shows the operation of a simple economy. It demonstrates the effect of changes in the fractional rate of consumption (or the converse the fractional rate of saving.)

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run.
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")  In summary, lower rates of consumption (based on production) result in higher rates of
This model shows the structure and operation of a simple economy. It can represent economic systems at different levels of abstraction (e.g. a single good, a group of goods, multiple groups, & an "economy.")

In summary, lower rates of consumption (based on production) result in higher rates of production and consumption in the long-run. Rates of consumption over 100% of production will diminish the savings stock and eventually cause rates of production and consumption to fall.
  Goodwin Model:   This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013),  Money and Macroeconomic Dynamics , Chapter 4.5 ( link )     Equilibrium conditions:   Labor Supply  = 100  Devation from the equilibrium conditions generates growth cycles.
Goodwin Model:
This is a basic version of the Goodwin Model based on Kaoru Yamagushi (2013), Money and Macroeconomic Dynamics, Chapter 4.5 (link)

Equilibrium conditions:
  • Labor Supply = 100
Devation from the equilibrium conditions generates growth cycles.
11 months ago
Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
 This
paper aims at describing a case where system dynamics modeling was used to evaluate
the effects of information and material supply lead-time variation on sales
contributions margins and operating cash conversion cycle of a commodity export
business.  An empirical dynamic model,
loaded with eco

This paper aims at describing a case where system dynamics modeling was used to evaluate the effects of information and material supply lead-time variation on sales contributions margins and operating cash conversion cycle of a commodity export business.  An empirical dynamic model, loaded with econometric theory of price effect on competitive demand, was used to describe the input data.  The model simulation outputs proved themselves relevant in analyzing the complex interconnections of multiple variables affecting  the profitability in a commercial routine, supporting the decision process among sales managers.

WIP Summary of MIchael Hudson's  Book  Killing the Host: How Financial Parasites and Debt destroy the Global Economy 
WIP Summary of MIchael Hudson's Book Killing the Host: How Financial Parasites and Debt destroy the Global Economy 
Jay Forrester's "Market Growth as Influenced by Capital Investment" model as rebuilt by Eric Stiens
Jay Forrester's "Market Growth as Influenced by Capital Investment" model as rebuilt by Eric Stiens
From Bill Mitchell and Warren Mosler December2018 billy  blog entry   and mosler's MMT  white paper  (google docs) 2019. Some highly aggregated stocks and flows and boundaries introduced.
From Bill Mitchell and Warren Mosler December2018 billy blog entry  and mosler's MMT white paper (google docs) 2019. Some highly aggregated stocks and flows and boundaries introduced.
A basic conceptual model to evaluate Government regulation of the food industry on community health and health & social costs. Would regulation have a negative impact on the overall budget in the short and longer term?
A basic conceptual model to evaluate Government regulation of the food industry on community health and health & social costs. Would regulation have a negative impact on the overall budget in the short and longer term?
Book Summary of The Great Transformation by Karl Polanyi see  Wikipedia  . See also more Karl Polanyi ideas  IM-181325
Book Summary of The Great Transformation by Karl Polanyi see Wikipedia . See also more Karl Polanyi ideas IM-181325
 Adam Smith's The Invisible Hand: The Feedback Structure of Markets. From Sterman JD Business Dynamics p170 Fig 5-26. A price-mediated resource allocation system..

Adam Smith's The Invisible Hand: The Feedback Structure of Markets. From Sterman JD Business Dynamics p170 Fig 5-26. A price-mediated resource allocation system..

Simulating Hyperinflation for 3650 days.  If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here,
Simulating Hyperinflation for 3650 days.

If private bond holdings are going down and the government is running a big deficit then the central bank has to monetize bonds equal to the deficit plus the decrease in private bond holdings.  We don't show the details of the central bank buying bonds here, just the net results.

See blog at http://howfiatdies.blogspot.com for more on hyperinflation, including a hyperinflation FAQ.
 The L ogistic Map  is a polynomial mapping (equivalently,  recurrence relation ) of  degree 2 , often cited as an archetypal example of how complex,  chaotic  behaviour can arise from very simple  non-linear  dynamical equations. The map was popularized in a seminal 1976 paper by the biologist  Rob

The Logistic Map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often cited as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation first created by Pierre François Verhulst

Mathematically, the logistic map is written

where:

 is a number between zero and one, and represents the ratio of existing population to the maximum possible population at year n, and hence x0 represents the initial ratio of population to max. population (at year 0)r is a positive number, and represents a combined rate for reproduction and starvation. To generate a bifurcation diagram, set 'r base' to 2 and 'r ramp' to 1
To demonstrate sensitivity to initial conditions, try two runs with 'r base' set to 3 and 'Initial X' of 0.5 and 0.501, then look at first ~20 time steps

Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."  ​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for
Adapted from Hartmut Bossel's "System Zoo 3 Simulation Models, Economy, Society, Development."

​Population model where the population is summarized in four age groups (children, parents, older people, old people). Used as a base population model for dealing with issues such as employment, care for the elderly, pensions dynamics, etc.
Very basic stock-flow diagram of simple interest with table and graph output in interest, bank account and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal, and initial balance bank account can all be modified.  I have developed a lesson plan in which stude
Very basic stock-flow diagram of simple interest with table and graph output in interest, bank account and savings development per year. Initial deposit, interest rate, yearly deposit and withdrawal, and initial balance bank account can all be modified. 
I have developed a lesson plan in which students work on both simple and compound interest across both IM and Excel. I also wrote an article about this. Both are in Dutch, which you can translate using for example Google Translate.