STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways.   (1) The ratio of actual transpiration to maximum evapotran
STEM-SM combines a simple ecosystem model (modified version of VSEM; Hartig et al. 2019) with a soil moisture model (Guswa et al. (2002) leaky bucket model). Outputs from the soil moisture model influence ecosystem dynamics in three ways. 
(1) The ratio of actual transpiration to maximum evapotranspiration (T/ETmax) modifies gross primary productivity (GPP).
(2) Degree of saturation of the soil (Sd) modifies the rate of soil heterotrophic respiration.
(3) Water limitation of GPP (by T/ETmax) and of soil nutrient availability (approximated by Sd) combine with leaf area limitation (approximated by fraction of incident photosynthetically-active radiation that is absorbed) to modify the allocation of net primary productivity to aboveground and belowground parts of the vegetation.

Ecosystem dynamics in turn influence flows of water in to and out of the soil moisture stock. The size of the aboveground biomass stock determines fractional vegetation cover, which modifies interception, soil evaporation and transpiration by plants.

References:
Guswa, A.J., Celia, M.A., Rodriguez-Iturbe, I. (2002) Models of soil moisture dynamics in ecohydrology: a comparative study. Water Resources Research 38, 5-1 - 5-15.

Hartig, F., Minunno, F., and Paul, S. (2019). BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. R package version 0.1.7. https://CRAN.R-project.org/package=BayesianTools

Clone of:  'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).   Translated to English (by Lisa Belyea)
Clone of: 
'Sucesion Forestal' (by Denny S. Fernandez del Viso) for subtropical forest, which in turn is a modification of 'Modeling forest succession in a northeast deciduous forest' (by Owen Stuart).
Translated to English (by Lisa Belyea)
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
This simulation shows how plant, deer and wolf populations impact each other in a deciduous forest ecosystem.
10 3 hours ago
This non-dimensionalized, sleekest most neatest model illustrates predator prey interactions using logistic growth for the moose population, for the wolf and moose populations on Isle Royale.   Thanks Scott Fortmann-Roe for the original model.  I've added in an adjustment to handle population sizes,
This non-dimensionalized, sleekest most neatest model illustrates predator prey interactions using logistic growth for the moose population, for the wolf and moose populations on Isle Royale.

Thanks Scott Fortmann-Roe for the original model.

I've added in an adjustment to handle population sizes, by dividing by moose carrying capacity.

Time is scaled by the moose birth parameter:
tau=bm*t

There are therefore only three parameters left to account for any dynamics:

beta = bw/bm (relative wolf to moose births)
delta = dm/bm (relative death to birth ratio for moose)
gamma = dw/bm (wolf deaths to moose births)

The equations are thus

dM/dtau = M [ (1-M) - delta W ]
dW/dtau = W [beta M - gamma ]

There is a stable equilibrium pair of population values, relative to the carrying capacity:

M^* = gamma / beta
W^* = (1-gamma / beta) / delta

I have a sleek version with a logistical growth term for the moose, at

http://www.nku.edu/~longa/classes/2018spring/mat375/mathematica/Moose-n-Wolf-InsightMaker-sleek.nb
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
A collaborative class project with each participant creating an animal/plant sub-model​ to explore the greater population/community dynamics of the Yellowstone ecosystem.
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  Experiment with adjusting the initial number of moose and wolves on the island.
Model created by Scott Fortmann-Roe.  This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

Experiment with adjusting the initial number of moose and wolves on the island.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.        Use the sliders below to quickly change the initial values of components of the model.
This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.

Use the sliders below to quickly change the initial values of components of the model.
  ​Predator-prey
models are the building masses of the bio-and environments as bio
masses are become out of their asset masses. Species contend, advance and
scatter essentially to look for assets to support their battle for their very
presence. Contingent upon their particular settings of uses, they

​Predator-prey models are the building masses of the bio-and environments as bio masses are become out of their asset masses. Species contend, advance and scatter essentially to look for assets to support their battle for their very presence. Contingent upon their particular settings of uses, they can take the types of asset resource-consumer, plant-herbivore, parasite-have, tumor cells- immune structure, vulnerable irresistible collaborations, and so on. They manage the general misfortune win connections and thus may have applications outside of biological systems. At the point when focused connections are painstakingly inspected, they are regularly in actuality a few types of predator-prey communication in simulation. 

 Looking at Lotka-Volterra Model:

The well known Italian mathematician Vito Volterra proposed a differential condition model to clarify the watched increment in predator fish in the Adriatic Sea during World War I. Simultaneously in the United States, the conditions contemplated by Volterra were determined freely by Alfred Lotka (1925) to portray a theoretical synthetic response wherein the concoction fixations waver. The Lotka-Volterra model is the least complex model of predator-prey communications. It depends on direct per capita development rates, which are composed as f=b−py and g=rx−d. 

A detailed explanation of the parameters:

  • The parameter b is the development rate of species x (the prey) without communication with species y (the predators). Prey numbers are reduced by these collaborations: The per capita development rate diminishes (here directly) with expanding y, conceivably getting to be negative. 
  • The parameter p estimates the effect of predation on x˙/x. 
  • The parameter d is the death rate of species y without connection with species x. 
  • The term rx means the net rate of development of the predator population in light of the size of the prey population.

Reference:

http://www.scholarpedia.org/article/Predator-prey_model

 

A flow based recreation of the base model presented in Munz et al 2009 using zombies to teach basic SIR epidemiology models
A flow based recreation of the base model presented in Munz et al 2009 using zombies to teach basic SIR epidemiology models
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

 This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.        Use the sliders below to quickly change the initial values of components of the model.
This model is to be used with Mr. Roderick's AP biology activity on population growth. See steveroderick.net for a copy of the activity worksheet.

Use the sliders below to quickly change the initial values of components of the model.
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.  We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale websi
This model illustrates predator prey interactions using real-life data of wolf and moose populations on the Isle Royale.

We incorporate logistic growth into the moose dynamics, and we replace the death flow of the moose with a kill rate modeled from the kill rate data found on the Isle Royale website.

I start with these parameters:
Wolf Death Rate = 0.15
Wolf Birth Rate = 0.0187963
Moose Birth Rate = 0.4
Carrying Capacity = 2000
Initial Moose: 563
Initial Wolves: 20

I used RK-4 with step-size 0.1, from 1959 for 60 years.

The moose birth flow is logistic, MBR*M*(1-M/K)
Moose death flow is Kill Rate (in Moose/Year)
Wolf birth flow is WBR*Kill Rate (in Wolves/Year)
Wolf death flow is WDR*W

A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
A simulation model that shows the relationship between the mountain biking trails in derby and the the effect it has on the tourism, 
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
This very simple model generates a tidal curve and a light climate at the sea surface to illustrate the non-linearity of the diel and tidal cycles. This has repercussions on benthic primary (and therefore also secondary) production.
 Addition of Allee effect to Logistic Growth Insight 1540. From the Appendix of Marten Scheffer's 2009 Book Critical Transitions in Nature and Society p332 http://bit.ly/yrd3GN. The Allee affect describes a threshold density (smaller than the carrying capacity K) below which populations go into free

Addition of Allee effect to Logistic Growth Insight 1540. From the Appendix of Marten Scheffer's 2009 Book Critical Transitions in Nature and Society p332 http://bit.ly/yrd3GN. The Allee affect describes a threshold density (smaller than the carrying capacity K) below which populations go into free fall extinction.

 A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.

A simulation illustrating how the size of a fish population affects the number of fish caught and vice versa.