Climate Change Models

These models and simulations have been tagged “Climate Change”.

Related tagsGreenhouse EffectClimate

Social
movements have a major role to play in forcing politicians to act on climate
change. This opinion has been clearly expressed by Pope Francis in his encyclical
on climate change and, amongst others, also by Naomi Klein in her book 'This
changes Everything'. The CLD suggests the need to strengt
Social movements have a major role to play in forcing politicians to act on climate change. This opinion has been clearly expressed by Pope Francis in his encyclical on climate change and, amongst others, also by Naomi Klein in her book 'This changes Everything'. The CLD suggests the need to strengthen the reinforcing loops R1 and R2 representing the activities of  environmental movements and also to disrupt the reinforcing loop R3 representing climate change  deniers. The most effective way in my opinion  to strengthen R1 and R2 is to weaken R3. This could be done by countering false arguments by pointing out on all occasions that the debate on climate change is over: climate scientists, by an overwhelming consensus, have established that anthropogenic global warming is a scientific fact. It could also be done by educating the public. The urgency of the situation suggests that the most effective way of doing this could be by closing negative feedback loops, for example, by linking extreme weather events, supported by graphic images, to global warming. Global warming can also be linked to inequality, poverty, larger forest fires,  coral reef bleaching, etc. The Pope has started the work by establishing these links in his encyclical. Of course, these are merely suggestions. Looking at the CLD carefully might well reveal other effective points of intervention
Changes to V19: calculation of energy investments set on base and additional materials, not materials as a fraction of a total
Changes to V19: calculation of energy investments set on base and additional materials, not materials as a fraction of a total
5 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
9 months ago
Narrative influence model sketching influence links in energy-economy-emissions
Narrative influence model sketching influence links in energy-economy-emissions



A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
A very simple thermodynamic model of a planet, based on first order approximations of its (black body) radiation balance.
DRAFT conceptual model of climate change connections in Yamuna river project.
DRAFT conceptual model of climate change connections in Yamuna river project.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
10 months ago
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 WIP Cloned  insight  (Fig 3.1 from Jorgen Randers  book  2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective  CLD kumu  added ALso AI based work at  Gene's brain link   and Colonial origins (Why Nations Fail Critique  paper (also via brain link)  Continued  top down i

WIP Cloned insight (Fig 3.1 from Jorgen Randers book 2052 a Global Forecast for the Next Forty Years) with Fidel Kaboub MMT Prespective CLD kumu added ALso AI based work at Gene's brain link  and Colonial origins (Why Nations Fail Critique paper (also via brain link) Continued top down integration at insight

5 months ago
Market-led Sustainability is  a 'Fix-that-Fails'. It is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be: investment in renewables, electric cars and the development of long-term battery storage as a back-up means to renewable energy. However, all of the
Market-led Sustainability is  a 'Fix-that-Fails'. It is illustraited in this graph in a very simplified manner. Likely market-led initiatives would be: investment in renewables, electric cars and the development of long-term battery storage as a back-up means to renewable energy. However, all of these lead to undesirable consequences that involve environmental and economic costs that will finally make the whole enterprise fail.
DRAFT conceptual model of climate change connections in Yamuna river project.
DRAFT conceptual model of climate change connections in Yamuna river project.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
10 months ago
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
Changes to V17: capacity retirement updated, fraction of Al in energy intensities endognously calculated; fC repair is now also limited by Al supply gap
10 6 months ago
DRAFT conceptual model of climate change connections in Yamuna river project.
DRAFT conceptual model of climate change connections in Yamuna river project.
 A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth ( primary source ). And a simple model of carbon dioxide sources and sinks in the atmosphere ( primary source ).
A model of Global Climate Change driven by the impact of Carbon Dioxide on the Greenhouse Effect. This model contains a physical model of energy inflows ☀️ and outflows from the Earth (primary source). And a simple model of carbon dioxide sources and sinks in the atmosphere (primary source).

The energy model assumes inflowing short-wave solar radiation that does not interact with the atmosphere. A fraction of this is reflected immediately (e.g. by snow and ice cover). The remaining is absorbed 🌎 and re-radiated as long-wave infrared which can be captured by the atmosphere ☁️. The fraction captured by the atmosphere is related to the level of Carbon Dioxide in the atmosphere.

This model tracks Carbon Dioxide emissions from burning fossil fuels 🏭 and land use changes 🚜 (e.g. deforestation). It also tracks removal of Carbon Dioxide from the atmosphere into a land sink 🌲 (e.g. vegetation) and the an ocean sink 🏖.

🧪 Experiment with different levels of emissions to see their impact on global average temperatures. You can also compare predicted temperatures and Carbon Dioxide levels to historical data.
9 months ago
Changes to V19: calculation of energy investments set on base and additional materials, not materials as a fraction of a total
Changes to V19: calculation of energy investments set on base and additional materials, not materials as a fraction of a total