Create an Insight Maker account to start building models. Insight Maker is completely free.


Start Now

Insight Maker runs in your web-browser. No downloads or plugins are needed. Start converting your ideas into your rich pictures, simulation models and Insights now. Features

Simulate

Explore powerful simulation algorithms for System Dynamics and Agent Based Modeling. Use System Dynamics to gain insights into your system and Agent Based Modeling to dig into the details. Types of Modeling

Collaborate

Sharing models has never been this easy. Send a link, embed in a blog, or collaborate with others. It couldn't be simpler. More

Free & Open

Build your models for free. Share them with others for free. Harness the power of Insight Maker for free. Open code mean security and transparency. More


Explore What Others Are Building

Here is a sample of public Insights made by Insight Maker users. This list is auto-generated and updated daily.

The limits to growth structure is based on the basic growth structure. And, as should be obvious, nothing grows forever as growth requires resources. Those required resources become a limits to growth. See also  Archetypes .   Video
The limits to growth structure is based on the basic growth structure. And, as should be obvious, nothing grows forever as growth requires resources. Those required resources become a limits to growth. See also Archetypes.
68 10 months ago
 Ce modèle simule la croissance d'une population dans des conditions idéales, inspiré du cas des  souris invasives  sur une île isolée et sans prédateurs.  Contrairement au modèle précédent (flux constants), la croissance ici n'est plus un nombre fixe. Elle est  proportionnelle  à la taille de la po

Ce modèle simule la croissance d'une population dans des conditions idéales, inspiré du cas des souris invasives sur une île isolée et sans prédateurs.

Contrairement au modèle précédent (flux constants), la croissance ici n'est plus un nombre fixe. Elle est proportionnelle à la taille de la population : plus il y a d'individus, plus il y a de naissances ! C'est le principe de la croissance exponentielle.

Les Composants du Modèle :

  • Variable d'état : L'Effectif de la population (N), qui est au cœur du système.

  • Variables forçantes & Taux : Les conditions idéales de l'île (absence de prédateurs, nourriture abondante) sont les "variables forçantes" qui déterminent les taux par individu b (natalité) et d (mortalité). Vous pouvez régler ces taux avec les curseurs.

  • Flux : Les flux de Naissances et de Morts ne sont plus constants. Ils dépendent de la variable d'état et des taux (calculés comme b*N et d*N), créant la boucle de rétroaction caractéristique de ce modèle.

  • Indicateurs : Le modèle calcule aussi le taux net r, son équivalent discret λ, et la transformation LN(N) pour l'analyse.

Votre Mission d'Exploration : Manipulez les taux b et d pour observer la forme de la croissance. Explorez les propriétés de ce modèle, comme le temps de doublement et l'effet "boule de neige", en cliquant sur le bouton "SIMULATE" en haut à droite !

 Goodwin cycle  IM-2010  with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment.

Goodwin cycle IM-2010 with debt and taxes added, modified from Steve Keen's illustration of Hyman Minsky's Financial Instability Hypothesis "stability begets instability". This can be extended by adding the Ponzi effect of borrowing for speculative investment.

 Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.      With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.     We start with an SIR model, such as that featured in the MAA model featured
Spring, 2020: in the midst of on-line courses, due to the pandemic of Covid-19.

With the onset of the Covid-19 coronavirus crisis, we focus on SIRD models, which might realistically model the course of the disease.

We start with an SIR model, such as that featured in the MAA model featured in

Without mortality, with time measured in days, with infection rate 1/2, recovery rate 1/3, and initial infectious population I_0=1.27x10-4, we reproduce their figure

With a death rate of .005 (one two-hundredth of the infected per day), an infectivity rate of 0.5, and a recovery rate of .145 or so (takes about a week to recover), we get some pretty significant losses -- about 3.2% of the total population.

Resources: